Solveeit Logo

Question

Question: Find the sum of the series: $\frac{1}{2}+\frac{1}{8}+\frac{1}{24}+\frac{1}{64}+......+\frac{1}{k.2^{...

Find the sum of the series: 12+18+124+164+......+1k.2k+......\frac{1}{2}+\frac{1}{8}+\frac{1}{24}+\frac{1}{64}+......+\frac{1}{k.2^{k}}+......

Answer

ln 2

Explanation

Solution

The given series is S=12+18+124+164+......S = \frac{1}{2}+\frac{1}{8}+\frac{1}{24}+\frac{1}{64}+.......
The general term of the series can be identified as Tk=1k2kT_k = \frac{1}{k \cdot 2^k}.
So, the series can be written in summation form as:
S=k=11k2kS = \sum_{k=1}^{\infty} \frac{1}{k \cdot 2^k}

We can rewrite this as:
S=k=1(1/2)kkS = \sum_{k=1}^{\infty} \frac{(1/2)^k}{k}

Recall the Maclaurin series expansion for ln(1x)\ln(1-x):
The Maclaurin series for ln(1x)\ln(1-x) is given by:
ln(1x)=xx22x33x44\ln(1-x) = -x - \frac{x^2}{2} - \frac{x^3}{3} - \frac{x^4}{4} - \dots
This can be expressed in summation notation as:
ln(1x)=k=1xkk\ln(1-x) = -\sum_{k=1}^{\infty} \frac{x^k}{k}
This expansion is valid for x<1|x| < 1.

Comparing our series S=k=1(1/2)kkS = \sum_{k=1}^{\infty} \frac{(1/2)^k}{k} with the general form ln(1x)=k=1xkk-\ln(1-x) = \sum_{k=1}^{\infty} \frac{x^k}{k}, we can see that x=12x = \frac{1}{2}.

Since x=1/2=1/2|x| = |1/2| = 1/2, which is less than 1, the expansion is valid.
Substitute x=1/2x = 1/2 into the formula for ln(1x)\ln(1-x):
k=1(1/2)kk=ln(112)\sum_{k=1}^{\infty} \frac{(1/2)^k}{k} = -\ln\left(1 - \frac{1}{2}\right)
S=ln(12)S = -\ln\left(\frac{1}{2}\right)
Using the logarithm property ln(a/b)=lnalnb\ln(a/b) = \ln a - \ln b and ln(1)=0\ln(1) = 0:
S=(ln1ln2)S = -(\ln 1 - \ln 2)
S=(0ln2)S = -(0 - \ln 2)
S=ln2S = \ln 2

The sum of the series is ln2\ln 2.