Solveeit Logo

Question

Mathematics Question on Probability

An urn contains 99 balls, 22 of which are white, 33 blue and 44 black. 33 balls are drawn at random from the urn. The chance that 22 balls will be of the same colour and the third of a different colour is

A

4584 \frac{45}{84}

B

5584 \frac{55}{84}

C

3584 \frac{35}{84}

D

2584 \frac{25}{84}

Answer

5584 \frac{55}{84}

Explanation

Solution

Let E1,E2E_1, E_2 and E3E_3 be the events such that drawn balI is white, blue and black respectively.
\therefore The required probability
=3P1P(E1)P(E1)P(Eˉ1)+3P1P(E2)P(E2)P(Eˉ2)+3P1P(E3)P(E3)P(Eˉ3)= \,^{3}P_1 P(E_1 )P(E_1)P(\bar{E}_1) + \,^{3}P_1P(E_2)P(E_2)P(\bar{E}_2) + \,^3P_1P(E_3)P(E_3)P(\bar{E}_3)
=3×29×18×77+3×39×28×67+3×49×38×57= 3\times\frac{2}{9} \times \frac{1}{8} \times \frac{7}{7}+ 3 \times \frac{3}{9}\times \frac{2}{8} \times \frac{6}{7} +3\times \frac{4}{9} \times \frac{3}{8} \times \frac{5}{7}
=3[14+36+609×8×7]=3×1109×8×7=5584=3\left[\frac{14+36+60}{9\times 8\times 7}\right] =\frac{3\times 110}{9\times 8\times 7}=\frac{55}{84}