Solveeit Logo

Question

Physics Question on Oscillations

An oscillator of mass MM is at rest in its equilibrium position in a potential V=12k(xX)2V = \frac{1}{2} k(x - X)^2. A particle of mass mm comes from right with speed u and collides completely inelastically with MM and sticks to it. This process repeats every time the oscillator crosses its equilibrium position. The amplitude of oscillations after 1313 collisions is : (M=10,m=5,u=1,k=1)(M=10, m=5, u=1, k=1)

A

13\frac{1}{\sqrt{3}}

B

12\frac{1}{2}

C

23\frac{2}{3}

D

35\sqrt{\frac{3}{5}}

Answer

13\frac{1}{\sqrt{3}}

Explanation

Solution

The correct option is(A): 13\frac{1}{\sqrt{3}}

Potential of the given oscillator is V=12k(xk)2V=\frac{1}{2} k(x-k)^{2}
Given: M=10;m=5,u=1;k=1M=10 ;\, m=5,\, u=1 ;\, k=1
Initial momentum of the particle of mass m=mu=m×5=5mm=m u=m \times 5=5\, m
Momentum of (oscillator + particle) after collision =(M+m)=(M+ m)
Velocity of oscillator after collision =v=v
So, momentum of system =(M+m)v=(M+ m) v
From conservation of linear momentum, we have
(M+m)=mu=5×1=5(M +m)=m u=5 \times 1=5
For second collision, oscillator and particle have momentum in opposite direction.
Net or total momentum is zero.
Likewise after 4th ,6th ,8th ,10th ,12th 4^{\text {th }}, 6^{\text {th }}, 8^{\text {th }}, 10^{\text {th }}, 12^{\text {th }} collision the momentum is zero.
After 12th 12^{\text {th }} collision, Mass of oscillator and 12 particles will be (10+12×5)=70(10+12 \times 5)=70
Now, from conservation of linear momentum, for 13th 13^{\text {th }} collision, we have
70×0+5×1=(70+5)v70 \times 0+5 \times 1=(70+5) v'
v=575\Rightarrow v'=\frac{5}{75}
115\Rightarrow \frac{1}{15}
Total mass after 13th 13^{\text {th }} collision =(10+13×5)=75=(10+13 \times 5)=75
Kinetic energy of system =12mv2=\frac{1}{2} m v'^{2}
KE=12×75×115×115\Rightarrow K E=\frac{1}{2} \times 75 \times \frac{1}{15} \times \frac{1}{15}
12kA2=12×75225=16\Rightarrow \frac{1}{2} k A^{2}=\frac{1}{2} \times \frac{75}{225}=\frac{1}{6}
12×1×A2=16\Rightarrow \frac{1}{2} \times 1 \times A^{2}=\frac{1}{6}
A2=13\Rightarrow A^{2}=\frac{1}{3}
A=13\Rightarrow A=\frac{1}{\sqrt{3}}