Solveeit Logo

Question

Physics Question on Oscillations

An oscillator consists of a block attached to a spring (k=400N/m)(k = 400 \,N/m). At some time t, the position (measured from the systems equilibrium location), velocity and acceleration of the block are x=0.100m,v=15.0m/sx=0.100\,m,\,v=-15.0\,m/s , and a=90m/s2a=-90\,m/s^{2} . The amplitude of the motion and the mass of the block are

A

0.2 m, 0.84 kg

B

0.3 m, 0.76 kg

C

0.4 m, 0.54 kg

D

0.5 m, 0.44 kg

Answer

0.5 m, 0.44 kg

Explanation

Solution

Given that, spring constant K=400N/mK=400 \,N / m
Position y=0.100my=0.100\, m
Velocity V=15.0m/sV =-15.0\, m / s
and acceleration a=90m/s2a =90 \,m / s ^{2}
We know that v=ωA2y2v=\omega \sqrt{A^{2}-y^{2}} \ldots. (i)
and a=ω2ya=-\omega^{2} y ... (ii)
From E (ii), 90=ω2×0.190=\omega^{2} \times 0.1
ω=30\Rightarrow \omega=30
How ω2=km9ω=400mm=49=0.44kg\omega^{2}=\frac{k}{m} 9\, \omega=\frac{400}{m} m=\frac{4}{9}=0.44 \,kg
From Eq (i), 15=ωA2y215=\omega \sqrt{A^{2}-y^{2}}
225=900(A2y2)225=900\left(A^{2}-y^{2}\right)
225=900A2900(01)2225=900 A^{2}-900(0-1)^{2}
A2=234900A=1530A^{2}=\frac{234}{900} A=\frac{15}{30}
=12=0.5m=\frac{1}{2}=0.5\, m