Solveeit Logo

Question

Question: An ordinary dice is rolled a certain number of times. The probability of getting an odd number 2 tim...

An ordinary dice is rolled a certain number of times. The probability of getting an odd number 2 times is equal to the probability of getting an even number 3 times. Then the probability of getting an odd number an odd number of times, is -

A

132\frac { 1 } { 32 }

B

516\frac { 5 } { 16 }

C

12\frac { 1 } { 2 }

D

None of these

Answer

12\frac { 1 } { 2 }

Explanation

Solution

The probability of getting an odd number in a throw= 36\frac { 3 } { 6 }

= 12\frac { 1 } { 2 } .

The probability of getting an odd number 2 times in n trails

= nC2 . (12)2\left( \frac { 1 } { 2 } \right) ^ { 2 }.

Similarly,the probability of getting an even number 3 times in n trails= nC3 . (12)3\left( \frac { 1 } { 2 } \right) ^ { 3 }. (12)n3\left( \frac { 1 } { 2 } \right) ^ { \mathrm { n } - 3 }

From the question, nC2 . = nC3 . Ž n = 5

\ the required probability

= 5C1 . (12)4\left( \frac { 1 } { 2 } \right) ^ { 4 }+ 5C3 .(12)3\left( \frac { 1 } { 2 } \right) ^ { 3 }. (12)2\left( \frac { 1 } { 2 } \right) ^ { 2 }+ 5C5 (12)5\left( \frac { 1 } { 2 } \right) ^ { 5 }

= (5 + 10 + 1). 125\frac { 1 } { 2 ^ { 5 } }= 1632\frac { 16 } { 32 } = 12\frac { 1 } { 2 } Hence (3) is correct answer