Solveeit Logo

Question

Mathematics Question on Application of derivatives

An open box with a square base is to be made out of a given quantity of a cardboard of area c2c^2 square units. The maximum volume of the box is (in cubic units)

A

c223\frac{c^{2}}{2\sqrt{3}}

B

c363\frac{c^{3}}{6\sqrt{3}}

C

4c/54c/5

D

6c26c^2

Answer

c363\frac{c^{3}}{6\sqrt{3}}

Explanation

Solution

Let the length, breadth and height of the box xx, xx and yy units respectively. Then, x2+4xy=c2(i)x^{2 }+ 4xy = c^{2} \quad\ldots\left(i\right) Let VV be the volume of the box. Then, V=x2y(ii)V = x^{2}y \quad\ldots\left(ii\right) V=x2(c2x24x)\Rightarrow V = x^{2}\left(\frac{c^{2}-x^{2}}{4x}\right) [Using (i)\left(i\right)] V=c24xx34\Rightarrow V = \frac{c^{2}}{4} x - \frac{x^{3}}{4} dVdx=c243x24\Rightarrow \frac{dV}{dx} = \frac{c^{2}}{4} - \frac{3x^{2}}{4} and d2Vdx2=3x2\frac{d^{2}V}{dx^{2}} = -\frac{3x}{2} For maximum or minimum, we must have dVdx=0\frac{dV}{dx} = 0 c243x24=0\Rightarrow \frac{c^{2}}{4} - \frac{3x^{2}}{4} = 0 x=c3\Rightarrow x = \frac{c}{\sqrt{3}} [neglectingx=c3d2Vdx2x=c3>0]\left[\text{neglecting}\, x = - \frac{c}{\sqrt{3}} \because \frac{d^{2}V}{dx^{2}}\bigg|_{x = - \frac{c}{\sqrt{3}}} > 0\right] Now, (d2Vdx2)x=c3=3c23<0\left(\frac{d^{2}V}{dx^{2}}\right)_{x = - \frac{c}{\sqrt{3}}} = \frac{-3c}{2\sqrt{3}} < 0 Thus, VV is maximum when x=c3x = \frac{c}{\sqrt{3}} Putting x=c3x = \frac{c}{\sqrt{3}} in (i)\left(i\right), we obtain y=c23y =\frac{c}{2\sqrt{3}} The maximum volume of the box is given by V=x2y=c23×c23V = x^{2}y = \frac{c^{2}}{3} \times \frac{c}{2\sqrt{3}} =c363 = \frac{c^{3}}{6\sqrt{3}} cubic units