Solveeit Logo

Question

Question: An officer has 3 options to go to his offices (i) By bike (ii) by car (iii) by bus. The probabilitie...

An officer has 3 options to go to his offices (i) By bike (ii) by car (iii) by bus. The probabilities of going late to his office in these three options are 14,13,12\frac { 1 } { 4 } , \frac { 1 } { 3 } , \frac { 1 } { 2 } respectively. Every day he tosses a die. If an even prime is thrown, he goes by bike. If odd prime is thrown, he goes by car or else, he goes by bus. If he is late his office, on a particular day, then the probability that he traveled by car on that day

A

24/87

B

48/87

C

36/87

D

8/87

Answer

24/87

Explanation

Solution

Let A, B, C be the events of choosing bike, car and bus

respectively.

P(1) = 12\frac { 1 } { 2 }

E be the event of going late to his office

P(E/A) = 14\frac { 1 } { 4 }, P(E/B) = 13\frac { 1 } { 3 } ; P(E/C) = 12\frac { 1 } { 2 }

P(B/E) = P(B)P(E/B)P(A)P(E/A)+P(B)P(E/B)+P(C)P(E/C)\frac { \mathrm { P } ( \mathrm { B } ) \cdot \mathrm { P } ( \mathrm { E } / \mathrm { B } ) } { \mathrm { P } ( \mathrm { A } ) \cdot \mathrm { P } ( \mathrm { E } / \mathrm { A } ) + \mathrm { P } ( \mathrm { B } ) \cdot \mathrm { P } ( \mathrm { E } / \mathrm { B } ) + \mathrm { P } ( \mathrm { C } ) \mathrm { P } ( \mathrm { E } / \mathrm { C } ) }

= 13×13124+19+14=19×1724+19\frac { \frac { 1 } { 3 } \times \frac { 1 } { 3 } } { \frac { 1 } { 24 } + \frac { 1 } { 9 } + \frac { 1 } { 4 } } = \frac { 1 } { 9 } \times \frac { 1 } { \frac { 7 } { 24 } + \frac { 1 } { 9 } }

= 19×24×963+24=2487+829\frac { 1 } { 9 } \times \frac { 24 \times 9 } { 63 + 24 } = \frac { 24 } { 87 } + \frac { 8 } { 29 }.