Solveeit Logo

Question

Physics Question on Refraction of Light

An observer can see through a pin-hole the top end of a thin rod of height A, placed as shown in the figure. The beaker height is 3h and its radius h. When the beaker is filled with a liquid up to a height 2h, he can see the lower end of the rod. Then the refractive index of the liquid is

A

52\frac{5}{2}

B

52\sqrt{\frac{5}{2}}

C

32\sqrt{\frac{3}{2}}

D

32\frac{3}{2}

Answer

52\sqrt{\frac{5}{2}}

Explanation

Solution

PQ=QR=2hPQ = QR = 2h i=45\therefore \quad \angle i = 45^\circ ST=RT=h=KM=MN\therefore \quad ST = RT = h = KM = MN So,KS=h2+(2h)2=h5\text{So,} \quad KS = \sqrt{h^2 + (2h)^2} = h\sqrt{5} sinr=hh5=15\therefore \quad \sin r = \frac{h}{h\sqrt{5}} = \frac{1}{\sqrt{5}} μ=sinisinr=sin451/5=52\therefore \quad \mu = \frac{\sin i}{\sin r} = \frac{\sin 45^\circ}{1/\sqrt{5}} = \sqrt{\frac{5}{2}}