Solveeit Logo

Question

Mathematics Question on Probability

An objective type test paper has 55 questions. Out of these 55 questions, 33 questions have four options each (A,B,C,D)(A, B, C, D) with one option being the correct answer. The other 22 questions have two options each, namely True and False. A candidate randomly ticks the options. Then the probability that he/she will tick the correct option in at least four questions, is

A

532\frac{5}{32}

B

3128\frac{3}{128}

C

3256\frac{3}{256}

D

364\frac{3}{64}

Answer

364\frac{3}{64}

Explanation

Solution

Total sample space, n(S)=4322n(S)=4^{3} \cdot 2^{2} and total number of favourable cases
n(E)=(3C13+2C11)+1n(E) =\left({ }^{3} C_{1} \cdot 3+{ }^{2} C_{1} \cdot 1\right)+1
Required probability =n(E)n(S)= \frac{n(E)}{n(S)}
=3C43+2C11+14322=33+2+1434= \frac{{ }^{3} C_{4} \cdot 3+{ }^{2} C_{1} \cdot 1+1}{4^{3} \cdot 2^{2}}=\frac{3 \cdot 3+2+1}{4^{3} \cdot 4}
=12644=364=\frac{12}{64 \cdot 4}=\frac{3}{64}