Solveeit Logo

Question

Physics Question on laws of motion

An object with mass 5 kg is acted upon by a force, F=(3i^+4j^)N\vec{F}=\left(-3\widehat{i}+4\widehat{j}\right)N. If its initial velocity at t = 0 is v=(3i^+12j^)m/s\vec{v}=\left(3\widehat{i}+12\widehat{j}\right)m/s , the time at which it will just have a velocity along y-axis is

A

2 s

B

5 s

C

15 s

D

10 s

Answer

10 s

Explanation

Solution

F=(3i^+4j^)\vec{F}=\left(-3 \hat{i}+4\hat{j}\right)
Ma=(3i^+4j^)M \vec{a}=\left(-3 \hat{i}+4\hat{j}\right)
M=5kgM=5 kg
a=(35i^+45j^)a=axi^+ayj^\vec{a}=\left(\frac{-3}{5}\hat{i}+\frac{4}{5} \hat{j}\right)\Rightarrow \vec{a}=a_{x} \hat{i}+a_{y} \hat{j}
ax=35a_{x}=\frac{-3}{5}
att=0at \, t=0
V0=(6i^12j^)V0xi^+V0yj^\vec{V}_{0}=\left(6 \hat{i}-12 \hat{j}\right)\, \Rightarrow\, V_{0 x} \hat{i}+V_{0 y} \hat{j}
V0x=6V_{0 x}=6
For the body to have velocity along y-axis only, x-component of velocity should be zero
i.e.,Vx=0i.e., V_{x}=0
Vx=V0x+axtV_{x}=V_{0x}+a_{x t}
0=6+(35)t0=6+\left(\frac{-3}{5}\right)t
6=35t6=\frac{3}{5} t
t=6×53=10st=\frac{6\times5}{3}=10 s
OROR
A=Fm=35i^+45j^A=\frac{F}{m}=\frac{-3}{5} \hat{i}+\frac{4}{5} \hat{j}
u=6i^12j^ms1u=6 \hat{i}-12 \hat{j} \, m s^{-1}
v=u+at.v=u+a t.
1j^=6i^12j^+(35i^+45j^)t1 \hat{j}=6\hat{i}-12\hat{j}+\left(\frac{-3}{5} \hat{i}+\frac{4}{5} \hat{j}\right)t
=(635t)i^(12+45t)j^=\left(6-\frac{3}{5}t\right)\hat{i}\left(-12+\frac{4}{5}t\right) \hat{j}
12+45tj^=1j^-12+\frac{4}{5}t \hat{j}=1 \hat{j}
565tj^=1j^-\frac{56}{5} t \hat{j}=1 \hat{j}
t=10st=10\, s