Solveeit Logo

Question

Physics Question on mechanical properties of fluid

An object weights m1m_1, in a liquid of density d1d_1 and that in liquid of density d2d_2\, is m2.\, m_2. The density dd of the object is

A

d=m2d2m1d1m2m1d = \frac{m_2 d_2 - m_1 d_1}{m_2 - m_1}

B

d=m1d1m2d2m2m1d = \frac{m_1 d_1 - m_2 d_2}{m_2 - m_1}

C

d=m2d1m1d2m1m2d = \frac{m_2 d_1 - m_1 d_2}{m_1 - m_2}

D

d=m1d2m2d1m1m2d = \frac{m_1 d_2 - m_2 d_1}{m_1 - m_2}

Answer

d=m1d2m2d1m1m2d = \frac{m_1 d_2 - m_2 d_1}{m_1 - m_2}

Explanation

Solution

Given that an object weighs m1m_{1} in a liquid of density d1d_{1} and m2m_{2} in a liquid of density d2d_{2}, so when the density of the object is dd, then we get
V(dd1)=m1V\left(d-d_{1}\right)=m_{1}
And V(dd2)=m2V\left(d-d_{2}\right)=m_{2}
Thus, dd1dd2=m1m2\frac{d-d_{1}}{d-d_{2}}=\frac{m_{1}}{m_{2}}
So, we get d=m1d2m2d1m1m2d=\frac{m_{1} d_{2}-m_{2} d_{1}}{m_{1}-m_{2}}.