Solveeit Logo

Question

Question: An object of mass three kilogram is at rest. Now a force \(\overrightarrow {\text{F}} = 6{t^2}\matho...

An object of mass three kilogram is at rest. Now a force F=6t2i+4tj\overrightarrow {\text{F}} = 6{t^2}\mathop i\limits^ \wedge + 4t\mathop j\limits^ \wedge is applied on the object then velocity of the object at t = 3{\text{t = 3}} second is.
A. 18i+3j{\text{18}}\mathop i\limits^ \wedge + 3\mathop j\limits^ \wedge
B. 18i+6j{\text{18}}\mathop i\limits^ \wedge + 6\mathop j\limits^ \wedge
C. 3i+18j3\mathop i\limits^ \wedge + 18\mathop j\limits^ \wedge
D. 18i+4j{\text{18}}\mathop i\limits^ \wedge + 4\mathop j\limits^ \wedge

Explanation

Solution

Hint: In this question a force of 6t2i+4tj6{t^2}\mathop i\limits^ \wedge + 4t\mathop j\limits^ \wedge is applied on the object therefore consider Fx=6t2i{\overrightarrow {\text{F}} _x} = 6{{\text{t}}^2}\mathop {\text{i}}\limits^ \wedge and Fy=4tj{{\text{F}}_y} = 4t\mathop j\limits^ \wedge .

Complete step-by-step answer:
Formula used: Acceleration = ForceMass{\text{Acceleration = }}\dfrac{{{\text{Force}}}}{{{\text{Mass}}}} i.e. a=Fm\overrightarrow {\text{a}} = \dfrac{{\overrightarrow {\text{F}} }}{{\text{m}}}

Given that,

F=6t2i+4tj\overrightarrow {\text{F}} = 6{t^2}\mathop i\limits^ \wedge + 4t\mathop j\limits^ \wedge

Mass =3kg = 3{\text{kg}}
Time =3 = 3 seconds
Therefore Fx=6t2i{\overrightarrow {\text{F}} _x} = 6{t^2}\mathop i\limits^ \wedge

As we know that a=Fm\overrightarrow {\text{a}} = \dfrac{{\overrightarrow {\text{F}} }}{{\text{m}}}
so, ax=63t2i{{\text{a}}_x} = \dfrac{6}{3}{t^2}\mathop i\limits^ \wedge
ax=2t2i{{\text{a}}_x} = {\text{2}}{{\text{t}}^2}\mathop i\limits^ \wedge
dvxdt = 2t2i\dfrac{{d{v_x}}}{{dt}}{\text{ = 2}}{{\text{t}}^2}\mathop i\limits^ \wedge

integrating both sides we get:

0v2dvx=032t2dt Vx=23t303=18m/s  \int\limits_0^{{v_2}} {d{v_x} = \int\limits_0^3 {2{t^2}} dt} \\\ {V_x} = \dfrac{{ - 2}}{3}{t^3}\int\limits_0^3 { = 18{\text{m/s}}} \\\

Now Fy=4tj{{\text{F}}_y} = 4t\mathop j\limits^ \wedge
therefore ay=43tj{{\text{a}}_y} = \dfrac{4}{3}t\mathop j\limits^ \wedge

Integrating both sides we get:
0vydvy=0343tdt Vy=t2303=6m/s  \int\limits_0^{{v_y}} {d{v_y} = \int\limits_0^3 {\dfrac{4}{3}t} dt} \\\ {V_y} = \dfrac{{{t^2}}}{3}\int\limits_0^3 { = 6{\text{m/s}}} \\\

Therefore the velocity of object i.e. V = 18i+6j{\text{V = 18}}\mathop i\limits^ \wedge + 6\mathop j\limits^ \wedge

Hence the correct option is B.

Note: In this question the force towards both the axis is given along with mass which is three kilogram hence we calculated the acceleration using the formula after that integrating both the resulted equation from limit zero to three we calculated the velocity of object as 18i+6j{\text{18}}\mathop i\limits^ \wedge + 6\mathop j\limits^ \wedge .