Solveeit Logo

Question

Physics Question on Motion in a plane

An object of mass 3 kg is at rest. Now a force of F=6t2i^+4tj^\vec{F} = 6 t^2 \hat{i} + 4t \hat{j} is applied on the object then velocity of object at r = 3 second is :-

A

18i^+3j^ 18 \widehat{i} + 3 \widehat{j}

B

18i^+6j^ 18 \widehat{i} + 6 \widehat{j}

C

3i^+18j^ 3 \widehat{i} + 18 \widehat{j}

D

18i^+4j^ 18 \widehat{i} + 4 \widehat{j}

Answer

18i^+6j^ 18 \widehat{i} + 6 \widehat{j}

Explanation

Solution

The correct answer is B:18i^+6j^18 \,\hat{ i }+6\, \hat{ j }
a=Fm=2t2i^+43tj^\vec{ a }=\frac{\vec{ F }}{ m }=2 t ^{2} \hat{ i }+\frac{4}{3} t \hat{ j }
dv=(2t2i^+43tj^)dtd \vec{ v }=\left(2 t ^{2} \hat{ i }+\frac{4}{3} t \hat{ j }\right) dt
Integrate on both sides
v=2[t33]i^+43[t22]j^\vec{ v }=2\left[\frac{ t ^{3}}{3}\right] \hat{ i }+\frac{4}{3}\left[\frac{ t ^{2}}{2}\right] \hat{ j }
at t=3sect =3 \,sec
v=23(3)3i+46(3)2j^\vec{ v }=\frac{2}{3}(3)^{3} i +\frac{4}{6}(3)^{2} \hat{ j }
=18i^+6j^=18 \,\hat{ i }+6\, \hat{ j }