Solveeit Logo

Question

Physics Question on Oscillations

An object of mass 0.2kg0.2 \, \text{kg} executes simple harmonic motion along the xx-axis with a frequency of (25π)Hz\left( \frac{25}{\pi} \right) \, \text{Hz}. At the position x=0.04mx = 0.04 \, \text{m}, the object has kinetic energy 0.5J0.5 \, \text{J} and potential energy 0.4J0.4 \, \text{J}. The amplitude of oscillation is \dots cm\text{cm}.

Answer

The total energy (T.E.) in SHM is the sum of kinetic energy (K.E.) and potential energy (P.E.):
T.E.=K.E.+P.E.T.E. = K.E. + P.E.
Substitute K.E.=0.5JK.E. = 0.5 \, \text{J} and P.E.=0.4JP.E. = 0.4 \, \text{J}:
T.E.=0.5+0.4=0.9J.T.E. = 0.5 + 0.4 = 0.9 \, \text{J}.
The total energy is also given by:
T.E.=12mω2A2,T.E. = \frac{1}{2} m \omega^2 A^2,
where:
ω=2πfandf=25π.\omega = 2 \pi f \quad \text{and} \quad f = \frac{25}{\pi}.
Substitute ω\omega:
ω=2π×25π=50rad/s.\omega = 2 \pi \times \frac{25}{\pi} = 50 \, \text{rad/s}.
Substitute T.E.=0.9JT.E. = 0.9 \, \text{J}, m=0.2kgm = 0.2 \, \text{kg}, ω=50rad/s\omega = 50 \, \text{rad/s}:
0.9=12×0.2×(50)2×A2.0.9 = \frac{1}{2} \times 0.2 \times (50)^2 \times A^2.
Simplify:
0.9=0.1×2500×A2    A2=0.92500=0.0036.0.9 = 0.1\times 2500 \times A^2 \implies A^2 = \frac{0.9}{2500} = 0.0036.
Solve for AA:
A=0.0036=0.06m.A = \sqrt{0.0036} = 0.06 \, \text{m}.
Convert to centimeters:
A=6cm.A = 6 \, \text{cm}.
Thus, the amplitude of oscillation is:
A=6cm.A = 6 \, \text{cm}.

Explanation

Solution

The total energy (T.E.) in SHM is the sum of kinetic energy (K.E.) and potential energy (P.E.):
T.E.=K.E.+P.E.T.E. = K.E. + P.E.
Substitute K.E.=0.5JK.E. = 0.5 \, \text{J} and P.E.=0.4JP.E. = 0.4 \, \text{J}:
T.E.=0.5+0.4=0.9J.T.E. = 0.5 + 0.4 = 0.9 \, \text{J}.
The total energy is also given by:
T.E.=12mω2A2,T.E. = \frac{1}{2} m \omega^2 A^2,
where:
ω=2πfandf=25π.\omega = 2 \pi f \quad \text{and} \quad f = \frac{25}{\pi}.
Substitute ω\omega:
ω=2π×25π=50rad/s.\omega = 2 \pi \times \frac{25}{\pi} = 50 \, \text{rad/s}.
Substitute T.E.=0.9JT.E. = 0.9 \, \text{J}, m=0.2kgm = 0.2 \, \text{kg}, ω=50rad/s\omega = 50 \, \text{rad/s}:
0.9=12×0.2×(50)2×A2.0.9 = \frac{1}{2} \times 0.2 \times (50)^2 \times A^2.
Simplify:
0.9=0.1×2500×A2    A2=0.92500=0.0036.0.9 = 0.1\times 2500 \times A^2 \implies A^2 = \frac{0.9}{2500} = 0.0036.
Solve for AA:
A=0.0036=0.06m.A = \sqrt{0.0036} = 0.06 \, \text{m}.
Convert to centimeters:
A=6cm.A = 6 \, \text{cm}.
Thus, the amplitude of oscillation is:
A=6cm.A = 6 \, \text{cm}.