Question
Physics Question on Oscillations
An object of mass 0.2kg executes simple harmonic motion along the x-axis with a frequency of (π25)Hz. At the position x=0.04m, the object has kinetic energy 0.5J and potential energy 0.4J. The amplitude of oscillation is … cm.
The total energy (T.E.) in SHM is the sum of kinetic energy (K.E.) and potential energy (P.E.):
T.E.=K.E.+P.E.
Substitute K.E.=0.5J and P.E.=0.4J:
T.E.=0.5+0.4=0.9J.
The total energy is also given by:
T.E.=21mω2A2,
where:
ω=2πfandf=π25.
Substitute ω:
ω=2π×π25=50rad/s.
Substitute T.E.=0.9J, m=0.2kg, ω=50rad/s:
0.9=21×0.2×(50)2×A2.
Simplify:
0.9=0.1×2500×A2⟹A2=25000.9=0.0036.
Solve for A:
A=0.0036=0.06m.
Convert to centimeters:
A=6cm.
Thus, the amplitude of oscillation is:
A=6cm.
Solution
The total energy (T.E.) in SHM is the sum of kinetic energy (K.E.) and potential energy (P.E.):
T.E.=K.E.+P.E.
Substitute K.E.=0.5J and P.E.=0.4J:
T.E.=0.5+0.4=0.9J.
The total energy is also given by:
T.E.=21mω2A2,
where:
ω=2πfandf=π25.
Substitute ω:
ω=2π×π25=50rad/s.
Substitute T.E.=0.9J, m=0.2kg, ω=50rad/s:
0.9=21×0.2×(50)2×A2.
Simplify:
0.9=0.1×2500×A2⟹A2=25000.9=0.0036.
Solve for A:
A=0.0036=0.06m.
Convert to centimeters:
A=6cm.
Thus, the amplitude of oscillation is:
A=6cm.