Solveeit Logo

Question

Question: An object moving with Velocity v = (2i + 3j + 4k )...

An object moving with Velocity v = (2i + 3j + 4k )

Answer

sqrt(29)

Explanation

Solution

The question provides the velocity vector of an object at a certain instant. The velocity vector is given as v=(2i^+3j^+4k^)\vec{v} = (2\hat{i} + 3\hat{j} + 4\hat{k}). A standard calculation performed when given a velocity vector is finding its magnitude, which represents the speed of the object.

The velocity vector is v=vxi^+vyj^+vzk^\vec{v} = v_x \hat{i} + v_y \hat{j} + v_z \hat{k}, where vx=2v_x = 2, vy=3v_y = 3, and vz=4v_z = 4. The magnitude of the velocity vector, which is the speed of the object, is given by the formula:

v=vx2+vy2+vz2|\vec{v}| = \sqrt{v_x^2 + v_y^2 + v_z^2}

Substitute the components of the given velocity vector into the formula:

v=22+32+42|\vec{v}| = \sqrt{2^2 + 3^2 + 4^2}

v=4+9+16|\vec{v}| = \sqrt{4 + 9 + 16}

v=29|\vec{v}| = \sqrt{29}

Thus, the speed of the object is 29\sqrt{29}.