Solveeit Logo

Question

Physics Question on Semiconductor electronics: materials, devices and simple circuits

An npnn-p-n transistor in a common-emitter mode is used as a simple voltage-amplifier with a collector- current of 4mA4 \,mA. The terminals of a 8V8\, V battery is connected to the collector through a load-resistance RLR_L and to the base through a resistance RBR_B. The collector-emitter voltage VCE=4VV_{CE} = 4 \,V, the base-emitter voltage VBE=0.6VV_{BE} = 0.6 \,V and the current amplification factor βdc=100\beta_{dc} = 100. Then

A

RL=1kΩ,RB=185kΩR_{L} = 1\, k\Omega, R_{B} = 185 \,k\Omega

B

RL=1kΩ=RBR_{L} = 1\, k\Omega = R_{B}

C

RL=2kΩ,RB=15kΩR_L = 2\,k\Omega, R_B = 15\, k\Omega

D

RL=185kΩ,RB=1kΩR_L = 185 \,k\Omega, R_B = 1\, k\Omega

Answer

RL=1kΩ,RB=185kΩR_{L} = 1\, k\Omega, R_{B} = 185 \,k\Omega

Explanation

Solution

An npnn-p-n transistor in a common-emitter mode with connections as given is shown in figure. Collector emitter voltage, VCE=VCCICRLV_{CE} = V_{CC} -I_{C} R_{L} RL=VCCVCEIC\therefore R_{L} = \frac{V_{CC} -V_{CE}}{I_{C}} =8V4V4×103A= \frac{8 V -4 V}{4\times 10^{-3} A} =103Ω=1kΩ= 10^{3} \Omega = 1 k\Omega As βdc=ICIB\beta_{dc} = \frac{I_{C}}{I_{B}} IB=ICβdc\therefore I_{B} = \frac{I_{C}}{\beta_{dc}} =4×103100A= \frac{4\times 10^{-3}}{100}A =4×105A = 4\times 10^{-5}A Base-emitter voltage, VBE=VCCIBRBV_{BE} = V_{CC} - I_{B} R_{B} RB=VCCVBEIB\therefore R_{B} = \frac{V_{CC} -V_{BE}}{I_{B}} =8V0.6V4×105A= \frac{8V -0.6 V}{4\times 10^{-5} A} =1.85×105Ω= 1.85 \times 10^{5}\Omega =185kΩ = 185\, k\Omega