Solveeit Logo

Question

Question: An isotonic solution will produce an osmotic pressure of \(10 \cdot 00{\text{ atm}}\) measured again...

An isotonic solution will produce an osmotic pressure of 1000 atm10 \cdot 00{\text{ atm}} measured against pure water at 37C{37^ \circ }{\text{C}}. How many grams of NaCl{\text{NaCl}} must be dissolved in one litre of water to produce isotonic solution?
A. 11.46 g11.46{\text{ g}}
B. 0.196 g0.196{\text{ g}}
C. 9.01 g9.01{\text{ g}}
D. 10 g10{\text{ g}}

Explanation

Solution

The solutions having the same concentration of salts are known as isotonic solutions. As the concentrations are the same, the isotonic solutions have the same osmotic pressure.
The pressure applied to pure solvent to prevent the solvent from passing into the solution is known as osmotic pressure. The osmotic pressure is calculated using the equation,
π=iMRT\pi = iMRT
Where, π\pi is the osmotic pressure,
ii is the van’t Hoff factor,
MM is the molar concentration of the solution,
RR is the universal gas constant,
TT is the temperature.

Complete step by step answer:
Step 1: Calculate the molar mass of NaCl{\text{NaCl}} as follows:
Molar mass of NaCl=(1×Mass of Na)+(1×Mass of Cl){\text{Molar mass of NaCl}} = \left( {1 \times {\text{Mass of Na}}} \right) + \left( {1 \times {\text{Mass of Cl}}} \right)
=(1×2299)+(1×3545)= \left( {1 \times 22 \cdot 99} \right) + \left( {1 \times 35 \cdot 45} \right)
=2299+3545= 22 \cdot 99 + 35 \cdot 45
Molar mass of NaCl=5844 g mol1{\text{Molar mass of NaCl}} = 58 \cdot 44{\text{ g mo}}{{\text{l}}^{ - 1}}
Thus, the molar mass of NaCl{\text{NaCl}} is 5844 g mol158 \cdot 44{\text{ g mo}}{{\text{l}}^{ - 1}}
Step 2: Convert the units of temperature from C^ \circ {\text{C}} to K{\text{K}} using the relation as follows:
T(K)=TC+273T\left( {\text{K}} \right) = {T^ \circ }{\text{C}} + 273.
Substitute 37C{37^ \circ }{\text{C}} for the temperature in C^ \circ {\text{C}}. Thus,
T(K)=37C+273T\left( {\text{K}} \right) = {37^ \circ }{\text{C}} + 273
T(K)=310 KT\left( {\text{K}} \right) = 310{\text{ K}}
Thus, the temperature is 310 K310{\text{ K}}.
Step 3: Calculate the molar concentration of the solution as follows:
The molar concentration of the solution is the number of moles of solute dissolved in one litre of solvent. Thus,
M=Number of moles of NaCl(mol)1 L{\text{M}} = \dfrac{{{\text{Number of moles of NaCl}}\left( {{\text{mol}}} \right)}}{{1{\text{ L}}}}
The number of moles of any solute is the ratio of mass in grams to the molar mass of the solute. Thus,
M=Mass of NaCl(g)/Molar mass of NaCl(g mol1)1 L{\text{M}} = \dfrac{{{\text{Mass of NaCl}}\left( {\text{g}} \right)/{\text{Molar mass of NaCl}}\left( {{\text{g mo}}{{\text{l}}^{ - 1}}} \right)}}{{1{\text{ L}}}}
Let the mass in grams of NaCl{\text{NaCl}} be xx. The molar mass of NaCl{\text{NaCl}} is 5844 g mol158 \cdot 44{\text{ g mo}}{{\text{l}}^{ - 1}}. Thus, the molar concentration of the solution is,
M=x g/5844 mol11 L{\text{M}} = \dfrac{{x{\text{ g}}/58 \cdot 44{\text{ mo}}{{\text{l}}^{ - 1}}}}{{1{\text{ L}}}}
M=x g5844 mol1 L{\text{M}} = \dfrac{{x{\text{ g}}}}{{58 \cdot 44{\text{ mo}}{{\text{l}}^{ - 1}}{\text{ L}}}}
Thus, the molar concentration of the solution is x g5844 mol1 L\dfrac{{x{\text{ g}}}}{{58 \cdot 44{\text{ mo}}{{\text{l}}^{ - 1}}{\text{ L}}}}.
Step 4: Calculate the grams of NaCl{\text{NaCl}} must be dissolved in one litre of water to produce isotonic solution as follows:
The osmotic pressure is calculated using the equation,
π=iMRT\pi = iMRT
Rearrange the equation for the molar concentration. Thus,
M=πiRTM = \dfrac{\pi }{{iRT}}
Substitute x g5844 mol1 L\dfrac{{x{\text{ g}}}}{{58 \cdot 44{\text{ mo}}{{\text{l}}^{ - 1}}{\text{ L}}}} for the molar concentration, 1000 atm10 \cdot 00{\text{ atm}} for the osmotic pressure, 22 for the van’t Hoff factor of NaCl{\text{NaCl}}, 008206 L atm mol1 K10 \cdot 08206{\text{ L atm mo}}{{\text{l}}^{ - 1}}{\text{ }}{{\text{K}}^{ - 1}} for the universal gas constant and 310 K310{\text{ K}} for the temperature. Thus,
x g58.44 ̸mol1̸L=1000 ̸atm2×008206 ̸̸atm ̸mol1 ̸K1×310 ̸K\dfrac{{x{\text{ g}}}}{{58.44{\text{ }}\not{{{\text{mo}}{{\text{l}}^{ - 1}}}}\not{{\text{L}}}}} = \dfrac{{10 \cdot 00{\text{ }}\not{{{\text{atm}}}}}}{{2 \times 0 \cdot 08206{\text{ }}\not{{\text{L}}}{\text{ }}\not{{{\text{atm}}}}{\text{ }}\not{{{\text{mo}}{{\text{l}}^{ - 1}}}}{\text{ }}\not{{{{\text{K}}^{ - 1}}}} \times 310{\text{ }}\not{{\text{K}}}}}
x=1146 gx = 11 \cdot 46{\text{ g}}
Thus, the grams of NaCl{\text{NaCl}} must be dissolved in one litre of water to produce isotonic solution 1146 g11 \cdot 46{\text{ g}}.

So, the correct answer is Option A .

Note:
The ratio of actual concentration of particles produced on dissolving a substance to the concentration of substance calculated from its mass is known as van’t Hoff factor.
NaCl{\text{NaCl}} gives two ions on dissociation, Na+{\text{N}}{{\text{a}}^ + } and Cl{\text{C}}{{\text{l}}^ - }.Thus, the van’t Hoff factor for NaCl{\text{NaCl}} is 22.