Solveeit Logo

Question

Mathematics Question on Area of a Triangle - by Heron’s Formula

An isosceles triangle has perimeter 30 cm and each of the equal sides is 12 cm. Find the area of the triangle.

Answer

Let the third side of this triangle be x.
Perimeter of triangle = 30 cm
30 = 12 + 12 + c
c = 30 - 24
c = 6 cm
Semi Perimeter (s) = P2\frac{P}{2} =(a + b + c)2 \frac{\text{(a + b + c)}}{2}
s = 302\frac{30}{2}
s = 15 cm

Using Heron’s formula,
Area of a triangle = s(s - a)(s - b)(s - c)\sqrt{\text{s(s - a)(s - b)(s - c)}}

=15(15 - 12)(15 -12)(15 - 6)= \sqrt{\text{15(15 - 12)(15 -12)(15 - 6)}}

=15×3×3×9= \sqrt{15 × 3 × 3 × 9}

=1215= \sqrt{1215}
=915= 9\sqrt{15} cm2

Area of the triangle =915= 9\sqrt{15} cm2