Solveeit Logo

Question

Question: An inverted bell lying at the bottom of a lake 47.6 m deep has 50 cm<sup>3</sup> of air trapped in i...

An inverted bell lying at the bottom of a lake 47.6 m deep has 50 cm3 of air trapped in it. The bell is brought to the surface of the lake. The volume of the trapped air will be (atmospheric pressure = 70 cm of Hg and density of Hg = 13.6 g/cm3)

A

350 cm3

B

300 cm3B

C

250 cm3

D

22 cm

Answer

300 cm3B

Explanation

Solution

According to Boyle's law, pressure and volume are inversely

proportional to each other i.e. P1VP \propto \frac { 1 } { V }

P1V1=P2V2P _ { 1 } V _ { 1 } = P _ { 2 } V _ { 2 }

(P0+hρwg)V1=P0V2\left( P _ { 0 } + h \rho _ { w } g \right) V _ { 1 } = P _ { 0 } V _ { 2 }

V2=(1+hρwgP0)V1\Rightarrow V _ { 2 } = \left( 1 + \frac { h \rho _ { w } g } { P _ { 0 } } \right) V _ { 1 }

V2=(1+47.6×102×1×100070×13.6×1000)V1V _ { 2 } = \left( 1 + \frac { 47.6 \times 10 ^ { 2 } \times 1 \times 1000 } { 70 \times 13.6 \times 1000 } \right) V _ { 1 }

[As =70×13.6×1000= 70 \times 13.6 \times 1000]