Solveeit Logo

Question

Question: An infinite cylinder of radius \(r_{0,}\)carrying linear charge density \(\lambda.\) The equation of...

An infinite cylinder of radius r0,r_{0,}carrying linear charge density λ.\lambda. The equation of the equipotential surface for this cylinder is.

A

r=roeπεo[V(r)+V(ro)]λr = r_{o}e^{\pi\varepsilon_{o}}\lbrack V(r) + V(r_{o})\rbrack\lambda

B

r=roe2πεo[V(r)V(ro)]λ2r = r_{o}e^{2\pi\varepsilon_{o}}\lbrack V(r) - V(r_{o})\rbrack\lambda^{2}

C

r=roe2πεo[V(r)V(ro)]λr = r_{o}e^{- 2\pi\varepsilon_{o}}\lbrack V(r) - V(r_{o})\rbrack\lambda

D

r=roe2πεo[V(r)V(ro)]λr = r_{o}e^{- 2\pi\varepsilon_{o}}\lbrack V(r) - V(r_{o})\rbrack\lambda

Answer

r=roe2πεo[V(r)V(ro)]λr = r_{o}e^{- 2\pi\varepsilon_{o}}\lbrack V(r) - V(r_{o})\rbrack\lambda

Explanation

Solution

:

Gaussial surface of radius r and length l. according to Gauss’s theorem

Eds=qε0=λlε0\oint_{}^{}{\overset{\rightarrow}{E}\overset{\rightarrow}{ds} = \frac{q}{\varepsilon_{0}} = \frac{\lambda l}{\varepsilon_{0}}}

E(2πrl)=λlε0E(2\pi rl) = \frac{\lambda l}{\varepsilon_{0}} or E=λ2πε0rE = \frac{\lambda}{2\pi\varepsilon_{0}r} … (i)

V(r)V(r0)=r0rE.dl=λ2πε0loger0r\therefore V(r) - V(r_{0}) = - \int_{r_{0}}^{r}{\overset{\rightarrow}{E}.\overset{\rightarrow}{dl} = \frac{\lambda}{2\pi\varepsilon_{0}}\log_{e}\frac{r_{0}}{r}}

For an equipotential surface of given V (r),

logerr0=2πε0λ[V(r)V(r0)]\log_{e}\frac{r}{r_{0}} = \frac{2\pi\varepsilon_{0}}{\lambda}\lbrack V(r) - V(r_{0})\rbrack

r=r0e2πε0[V(r)V(r0)]\therefore r = r_{0}e^{- 2\pi\varepsilon_{0}\lbrack V(r) - V(r_{0})\rbrack}