Solveeit Logo

Question

Physics Question on Inductance

An inductor and a resistor are connected in series to an ACAC source. The current in circuit is 500mA500\, mA, if the applied ACAC voltage is 82V8 \sqrt{2} V at a frequency of 175πHz\frac{175}{\pi} Hz and the current in the circuit is 400mA400\, mA, if the same ACAC voltage at a frequency of 225πHz\frac{225}{\pi} Hz is applied. The values of the inductance and the resistance are respectively

A

60mH,71Ω60\, mH,\, 71\, \Omega

B

60mH,71Ω\sqrt{60}\, mH,\, 71\, \Omega

C

60mH,71Ω\sqrt{60}\, mH,\, \sqrt{71}\, \Omega

D

60mH,71Ω60\, mH,\, \sqrt{71}\, \Omega

Answer

60mH,71Ω60\, mH,\, \sqrt{71}\, \Omega

Explanation

Solution

For an LR circuit, I=VZ=VR2+L2ω2L-R \text { circuit, } I=\frac{V}{Z}=\frac{V}{\sqrt{R^{2}+L^{2} \omega^{2}}}
R2+L2ω2=(VI)2\Rightarrow R^{2}+L^{2} \omega^{2} =\left(\frac{V}{I}\right)^{2}
Here, I1=500×103AI_{1} =500 \times 10^{-3} A
ω1=175π×2πrads=350rads\omega_{1}=\frac{175}{\pi} \times 2 \pi \frac{ rad }{ s }=350 \frac{ rad }{ s }
V1=82V_{1} =8 \sqrt{2}
R2+L2(350)2=(82500×103)2\Rightarrow R^{2}+L^{2}(350)^{2}=\left(\frac{8 \sqrt{2}}{500 \times 10^{-3}}\right)^{2}
R2+L2(350)2=512\Rightarrow R^{2}+L^{2}(350)^{2}=512 ...(i)
and R2+L2(550)2=800R^{2}+L^{2}(550)^{2} =800 ...(ii)
Solving, we get R=71Ω and L=60mHR=\sqrt{71} \,\Omega \text { and } L=60\, mH