Solveeit Logo

Question

Physics Question on Transformers

An ideal transformer with purely resistive load operates at 12 kV on the primary side. It supplies electrical energy to a number of nearby houses at 120 V. The average rate of energy consumption in the houses served by the transformer is 60 kW. The value of resistive load (Rs) required in the secondary circuit will be ________ mΩ.

Answer

š‘‰š‘ š‘‰š‘=š‘š‘ š‘š‘\frac{š‘‰_š‘ }{š‘‰_š‘} = \frac{š‘_š‘ }{š‘_š‘}
⟹ 12012000=š‘š‘ š‘š‘\frac{120}{12000} = \frac{š‘_š‘ }{š‘_š‘}
⟹ š‘š‘ š‘š‘=1100\frac{š‘_š‘ }{š‘_š‘} = \frac{1}{100} āˆ’ āˆ’ āˆ’ (š‘–)
For an ideal transformer, input power = Output power
And power is given by š‘ƒ = š‘–š‘‰
š‘–š‘š‘‰š‘=š‘–š‘ š‘‰š‘ =60000š‘Šš‘–_š‘š‘‰_š‘ = š‘–_š‘ š‘‰_š‘  = 60000š‘Š
š‘–š‘=6000012000=5š‘–š‘ = \frac{60000}{12000} = 5
Now, š‘…_š‘ = \frac{š‘‰_š‘}{š‘–_š‘}$$ = \frac{12000}{5} = 2400 Ī©
š‘…š‘ =š‘‰š‘ š‘–š‘ =12060000/120=120Ɨ120/60000=120/500=0.240Ī©=240š‘šĪ©š‘…_š‘  =\frac{š‘‰_š‘ }{š‘–_š‘ } = \frac{120}{60000/120} = 120 Ɨ 120/60000 = 120/500 = 0.240Ī© = 240 š‘šĪ©