Solveeit Logo

Question

Chemistry Question on Adiabatic Processes

An ideal gas, CV=52R\overline{C_V} = \frac{5}{2} R, is expanded adiabatically against a constant pressure of 1 atm until it doubles in volume.
If the initial temperature and pressure are 298K298 \, \text{K} and 5atm5 \, \text{atm}, respectively, then the final temperature is ______ K\, \text{K} (nearest integer).
Given: CV\overline{C_V} is the molar heat capacity at constant volume.

Answer

For an adiabatic process:
ΔU=q+w,q=0    ΔU=w\Delta U = q + w, \quad q = 0 \implies \Delta U = w
Step 1: Using the first law of thermodynamics:
nCVΔT=Pext(V2V1)n C_V \Delta T = -P_{\text{ext}} (V_2 - V_1)
Since V2=2V1V_2 = 2V_1, substitute and simplify:
nRT2P2=2nRT1P1.nR \frac{T_2}{P_2} = 2nR \frac{T_1}{P_1}.
Step 2: Relation between P2P_2 and T2T_2:
P2=5T22×298.P_2 = \frac{5T_2}{2 \times 298}.
Step 3: Using CVC_V:
52nR(T2T1)=nRT1(P2P11).\frac{5}{2} nR (T_2 - T_1) = -nR T_1 \left( \frac{P_2}{P_1} - 1 \right).
Step 4: Substitute and solve:
T2=5T22×298.T_2 = \frac{5T_2}{2 \times 298}.
From the equation:
T2274.16K.T_2 \approx 274.16 \, \text{K}.
Nearest integer:
T2274K.T_2 \approx 274 \, \text{K}.

Explanation

Solution

For an adiabatic process:
ΔU=q+w,q=0    ΔU=w\Delta U = q + w, \quad q = 0 \implies \Delta U = w
Step 1: Using the first law of thermodynamics:
nCVΔT=Pext(V2V1)n C_V \Delta T = -P_{\text{ext}} (V_2 - V_1)
Since V2=2V1V_2 = 2V_1, substitute and simplify:
nRT2P2=2nRT1P1.nR \frac{T_2}{P_2} = 2nR \frac{T_1}{P_1}.
Step 2: Relation between P2P_2 and T2T_2:
P2=5T22×298.P_2 = \frac{5T_2}{2 \times 298}.
Step 3: Using CVC_V:
52nR(T2T1)=nRT1(P2P11).\frac{5}{2} nR (T_2 - T_1) = -nR T_1 \left( \frac{P_2}{P_1} - 1 \right).
Step 4: Substitute and solve:
T2=5T22×298.T_2 = \frac{5T_2}{2 \times 298}.
From the equation:
T2274.16K.T_2 \approx 274.16 \, \text{K}.
Nearest integer:
T2274K.T_2 \approx 274 \, \text{K}.