Solveeit Logo

Question

Question: An ideal gas heat engine operates in a Carnot's cycle between \(227^{o}C\) and\(127^{o}C\). It absor...

An ideal gas heat engine operates in a Carnot's cycle between 227oC227^{o}C and127oC127^{o}C. It absorbs 6 × 104 J at high temperature. The amount of heat converted into work is

A

4.8×104J4.8 \times 10^{4}J

B

3.5×104J3.5 \times 10^{4}J

C

1.6×104J1.6 \times 10^{4}J

D

1.2×104J1.2 \times 10^{4}J

Answer

1.2×104J1.2 \times 10^{4}J

Explanation

Solution

η=1T2T1=1400500=15\eta = 1 - \frac{T_{2}}{T_{1}} = 1 - \frac{400}{500} = \frac{1}{5} 6muη=WQ\because\mspace{6mu}\eta = \frac{W}{Q}15=WQ\frac{1}{5} = \frac{W}{Q}

W=Q5=65×104=1.2×104JW = \frac{Q}{5} = \frac{6}{5} \times 10^{4} = 1.2 \times 10^{4}J