Solveeit Logo

Question

Question: An ideal gas at pressure P is adiabatically compressed so that its density becomes *n* times the ini...

An ideal gas at pressure P is adiabatically compressed so that its density becomes n times the initial value. The final pressure of the gas will be

A

nγ\gammaP

B

(nγ\gamma)P

C

n( γ\gamma – 1)P

D

n(1 – γ\gamma)P

Answer

nγ\gammaP

Explanation

Solution

: for an adiabatic process,

PVγ\mathrm { PV } ^ { \gamma } = constant

P1V1γ=P2V2γ\therefore P _ { 1 } V _ { 1 } ^ { \gamma } = P _ { 2 } V _ { 2 } ^ { \gamma }

Where subscripts 1 and 2 represent the initial and final states respectively.

Or P2P1=(V1V2)γ=(ρ2ρ1)γ=(nρ1ρ1)γ\frac { P _ { 2 } } { P _ { 1 } } = \left( \frac { V _ { 1 } } { V _ { 2 } } \right) ^ { \gamma } = \left( \frac { \rho _ { 2 } } { \rho _ { 1 } } \right) ^ { \gamma } = \left( \frac { n \rho _ { 1 } } { \rho _ { 1 } } \right) ^ { \gamma }

Or P2=P1nγ=nγP(P1=P)P _ { 2 } = P _ { 1 } n ^ { \gamma } = n ^ { \gamma } P \quad \left( \because P _ { 1 } = P \right)