Solveeit Logo

Question

Physics Question on Thermodynamics

An ideal gas at pressure PP is adiabatically compressed so that its density becomes nn times the initial value. The final pressure of the gas will be (γ=CPCV)\left(\gamma = \frac{C_{P}}{C_{V}}\right)

A

n(γ)Pn^({\gamma})P

B

(nγ)P\left(n-\gamma\right)P

C

n(γ1)Pn\left(\gamma-1\right)P

D

n(1γ)Pn\left(1-\gamma\right)P

Answer

n(γ)Pn^({\gamma})P

Explanation

Solution

For an adiabatic process, PVγ=PV^{\gamma} = constant
P1V1γ=P2V2γ\therefore P_{1}V_{1}^{\gamma} = P_{2}V_{2}^{\gamma}
where subscripts 11 and 22 represent the initial and final states respectively
or P2P1=(V1V2)γ=(ρ2ρ1)γ=(nρ1ρ1)γ\frac{P_{2}}{P_{1}} = \left(\frac{V_{1}}{V_{2}}\right)^{\gamma} = \left(\frac{\rho_{2}}{\rho_{1}}\right)^{\gamma} = \left(\frac{n\rho_{1}}{\rho_{1}}\right)^{\gamma}
or P2=P1nγ=nγP(P1=P)P_{2} = P_{1}n^{\gamma} = n^{\gamma} P \quad\left(\because P_{1}=P\right)