Solveeit Logo

Question

Question: An ideal fluid flows through a pipe of circular cross-section made of two sections with diameters 2....

An ideal fluid flows through a pipe of circular cross-section made of two sections with diameters 2.5 cm and 3.75 cm. The ratio of the velocities in the two pipes is

A

9 : 4

B

3 : 2

C

3:2\sqrt { 3 } : \sqrt { 2 }

D

Answer

9 : 4

Explanation

Solution

According to equation of continuity

Or v1v2=a2a1=πd22/4π d12/4=(d2 d1)2=(3.752.50)2=94\frac { \mathrm { v } _ { 1 } } { \mathrm { v } _ { 2 } } = \frac { \mathrm { a } _ { 2 } } { \mathrm { a } _ { 1 } } = \frac { \pi \mathrm { d } _ { 2 } ^ { 2 } / 4 } { \pi \mathrm {~d} _ { 1 } ^ { 2 } / 4 } = \left( \frac { \mathrm { d } _ { 2 } } { \mathrm {~d} _ { 1 } } \right) ^ { 2 } = \left( \frac { 3.75 } { 2.50 } \right) ^ { 2 } = \frac { 9 } { 4 }