Solveeit Logo

Question

Physics Question on Units and measurement

An expression of energy density is given by
u=αβsin(αxkt)u = \frac{α}{β} sin (\frac{αx}{kt})
, where α, β are constants, x is displacement, k is Boltzmann constant and t is the temperature. The dimensions of β will be

A

[ML2T2θ1][ML^2T^{-2}θ^{-1}]

B

[M0L2T2][M^0L^2T^{-2}]

C

[M0L0T0][M^0L^0T^0]

D

[M0L2T0][M^0L^2T^0]

Answer

[M0L2T0][M^0L^2T^0]

Explanation

Solution

The correct answer is (D) : [M0L2T0][M^0L^2T^0]
u=αβsin(αxkt)u = \frac{α}{β} sin (\frac{αx}{kt})
[α]=[ktx]=[Energy][Distance][α] = [\frac{kt}{x}] = \frac{[Energy]}{[Distance]}
[β]=[α][u][β] = \frac{[α]}{[u]}
=[Energy]/[Distance][Energy]/[Volume]= \frac{[Energy]/[Distance]}{[Energy]/[Volume]}
=[L2]= [L^2]