Solveeit Logo

Question

Mathematics Question on Probability

An experiment has 1010 equally likely outcomes. Let AA and BB be two non-empty events of the experiment. If AA consists of 44 outcomes, then the number of outcomes that BB must have, so that AA and BB are independent, is

A

2,4or82, 4 \,or\, 8

B

3,6or93, 6\, or\, 9

C

4or84\, or\, 8

D

5or105 \,or\, 10

Answer

5or105 \,or\, 10

Explanation

Solution

Since, P(A) =25\frac{2}{5}
For independent events,
P(A \cap B) = P(A)P(B) P(AB)25\Rightarrow \, P(A\cap B) \le \frac{2}{5}
P(AB)=110,210,310,410\Rightarrow \, \, \, P(A \cap B)=\frac{1}{10},\frac{2}{10},\frac{3}{10},\frac{4}{10}
[maximum 4 outcomes may be in ABA \cap B
(i) Now, P(AB)=110 \, \, \, \, \, \, P(A \cap B)=\frac{1}{10}
P(A).P(B)=110\Rightarrow \, \, \, \, \, \, \, \, P(A).P(B) = \frac{1}{10}
P(B)=110×52=14,\Rightarrow \, \, \, \, \, \, \, \, P(B)=\frac{1}{10} \times \frac{5}{2}=\frac{1}{4}, not possible
(ii) Now,P(AB)=21025×P(B)=210 \, \, \, \, \, \, \, \, \, \, \, P(A \cap B)=\frac{2}{10} \, \, \Rightarrow \, \, \frac{2}{5} \times P(B)=\frac{2}{10}
P(B)=510,\Rightarrow \, \, \, \, \, \, \, \, \, P(B)=\frac{5}{10},outcomes of B = 5
(iii) Now, P(AB)=310P(A \cap B)=\frac{3}{10}
P(A)P(B)=31025×P(B)=310\Rightarrow \, \, \, \, \, \, \, \, \, P(A)P(B)=\frac{3}{10} \, \, \Rightarrow \, \, \, \frac{2}{5}\times P(B) =\frac{3}{10}
P(B) =34,\frac{3}{4}, not possible
(iv) Now P(AB)=410P(A)>p(B)=410P(A \cap B)=\frac{4}{10} \Rightarrow \, \, P(A)>p(B)=\frac{4}{10}
P(B)=1,\Rightarrow \, \, \, \, \, \, \, \, \, \, \, P(B)=1, outcomes of B = 10.