Solveeit Logo

Question

Question: An excess of liquid mercury is added to an acidified solution of \(1.0\, \times \,{10^{ - 3}}M\,F{e^...

An excess of liquid mercury is added to an acidified solution of 1.0×103MFe3+1.0\, \times \,{10^{ - 3}}M\,F{e^{3 + }}. It is found that 5% of Fe3+F{e^{3 + }}remains at equilibrium at 25°C. Calculate EHg22+/HgoE_{Hg_2^{2 + }/Hg}^o assuming that the only reaction that occurs is
2Hg+2Fe3+Hg22++2Fe2+2Hg + 2F{e^{3 + }}\, \to \,Hg_2^{2 + } + 2F{e^{2 + }}
(Given, EFe3+/Fe2+{E_{F{e^{3 + }}/F{e^{2 + }}}}= 0.77 volt).

Explanation

Solution

Hint: Since we know that Nernst equation is: Ecell=Ecell00.059nlogQ{E_{cell}}\, = \,E_{cell}^0\, - \,\dfrac{{0.059}}{n}\log Q and at equilibrium, Ecell{E_{cell}} =0, so the final equation becomes Ecell0=0.059nlogQE_{cell}^0\, = \,\dfrac{{0.059}}{n}\log Q and then with the value of Ecell0E_{cell}^0 we can calculate EHg22+/HgoE_{Hg_2^{2 + }/Hg}^o by using the formula Ecell0=Ecathode0Eanode0E_{cell}^0\, = \,E_{cathode}^0 - E_{anode}^0 .

Complete step-by-step answer:
Firstly, let us understand about the Nernst equation.
The redox reactions that are reversible in nature can be expressed in the 'Nernst equation', which helps in the determination of the concentrations of the reduced and oxidized elements at the equilibrium.
Now writing down the reaction which takes place between Fe3+F{e^{3 + }}ions and HgHg:
2Fe3++2Hg2Fe2++Hg22+2F{e^{3 + }} + \,2Hg\,\, \to \,\,2F{e^{2 + }} + \,Hg_2^{2 + }
Now at time t=0,
Fe3+F{e^{3 + }} ions concentration originally : 1.0×103M1.0 \times {10^{ - 3}}\,M
At equilibrium, at 25°C:
Fe3+F{e^{3 + }} ions concentration: 5% of the original concentration.
5100×103=5×105M\Rightarrow \,\dfrac{5}{{100}} \times {10^{ - 3\,}}\, = \,5 \times {10^{ - 5}}\,M
Now let us find the concentration of Fe2+F{e^{2 + }} ions which are converted from Fe3+F{e^{3 + }}ions :
[Fe2+]=[Fe3+]initial+[Fe3+]equilibrium\left[ {F{e^{2 + }}} \right] = {\left[ {F{e^{3 + }}} \right]_{initial}} + {\left[ {F{e^{3 + }}} \right]_{equilibrium}}
i.e. we can find the concentration of Fe2+F{e^{2 + }}ions by calculating the difference between the initial and the equilibrium concentration of Fe3+F{e^{3 + }}ions.
(1.0×103)(5×105)=0.95×103\Rightarrow (1.0 \times {10^{ - 3}})\, - \,(5 \times {10^{ - 5}})\, = \,0.95 \times {10^{ - 3}}
Similarly the concentration of Hg22+Hg_2^{2 + } ions at equilibrium = 0.95×1032=0.475×103M\dfrac{{0.95 \times {{10}^{ - 3}}}}{2} = 0.475 \times {10^{ - 3}}M
Now as we know, At equilibrium Ecell{E_{cell}} = 0
So Nernst equation is: Ecell0=0.059nlog[Hg22+][Fe2+]2+[Fe3+]2\,E_{cell}^0\, = \,\dfrac{{0.059}}{n}\log \dfrac{{\left[ {Hg_2^{2 + }} \right]\,{{\left[ {F{e^{2 + }}} \right]}^{2 + }}}}{{{{\left[ {F{e^{3 + }}} \right]}^2}}}
So putting concentration values and n=2, we get:
Ecell0=0.0592log[0.475×103][0.95×103]2+[5×105]2\,E_{cell}^0\, = \,\dfrac{{0.059}}{2}\log \dfrac{{\left[ {0.475 \times {{10}^{ - 3}}} \right]\,{{\left[ {0.95 \times {{10}^{ - 3}}} \right]}^{2 + }}}}{{{{\left[ {5 \times {{10}^{ - 5}}} \right]}^2}}}
On solving further, we get: Ecell0E_{cell}^0 = -0.0276 V
Since Ecell0E_{cell}^0is nothing but the difference of reduction potential between cathode and anode.
Mathematically: Ecello=Ecathode0Eanode0E_{cell}^o = E_{cathode}^0\, - \,E_{anode}^0
Or, Ecell0E_{cell}^0= EFe3+/Fe2+0EHg22+/Hg0E_{F{e^{3 + }}/F{e^{2 + }}}^0 - E_{Hg_2^{2 + }/Hg}^0
Also it is given to us in the question that EFe3+/Fe2+{E_{F{e^{3 + }}/F{e^{2 + }}}}= 0.77 volt
So we have, -0.0276=0.77-EHg22+/Hg0E_{Hg_2^{2 + }/Hg}^0
\Rightarrow EHg22+/Hg0E_{Hg_2^{2 + }/Hg}^0= 0.7976 V

Note: There are many applications of the Nernst equation one of which is in calculating ion concentration. It is also used to calculate the potential of an ion across a membrane. Moreover the equation can also be used to determine the pH value.