Solveeit Logo

Question

Mathematics Question on Matrices and Determinants

An even number is the determinant of (A) [11 15](B) [131 115](C) [161 1115](D) [612 1115]\text{(A)} \ \begin{bmatrix} 1 & -1 \\\ -1 & 5 \end{bmatrix} \quad \text{(B)} \ \begin{bmatrix} 13 & -1 \\\ -1 & 15 \end{bmatrix} \quad \text{(C)} \ \begin{bmatrix} 16 & -1 \\\ -11 & 15 \end{bmatrix} \quad \text{(D)} \ \begin{bmatrix} 6 & -12 \\\ 11 & 15 \end{bmatrix}
Choose the correct\textbf{correct} answer from the options given below:

A

(A), (B) and (D) only

B

(A), (B) and (C) only

C

(A), (B), (C) and (D)

D

(B), (C) and (D) only

Answer

(A), (B) and (D) only

Explanation

Solution

The determinant of a 2×22 \times 2 matrix [ab cd]\begin{bmatrix} a & b \\\ c & d \end{bmatrix} is:
Determinant=adbc.\text{Determinant} = ad - bc.

Calculate the determinants:

Step 1: For (A): Determinant=(1)(5)(1)(1)=51=4 (even).\text{Determinant} = (1)(5) - (-1)(-1) = 5 - 1 = 4 \text{ (even)}.

Step 2: For (B): Determinant=(13)(15)(1)(1)=1951=194 (even).\text{Determinant} = (13)(15) - (-1)(-1) = 195 - 1 = 194 \text{ (even)}.

Step 3: For (C): Determinant=(16)(15)(1)(11)=240+11=251 (odd).\text{Determinant} = (16)(15) - (-1)(-11) = 240 + 11 = 251 \text{ (odd)}.

Step 4: For (D): Determinant=(6)(15)(12)(11)=90+132=222 (even).\text{Determinant} = (6)(15) - (-12)(11) = 90 + 132 = 222 \text{ (even)}.

Thus, matrices (A), (B), and (D) have even determinants.