Solveeit Logo

Question

Mathematics Question on Conic sections

An equilateral triangle is inscribed in the parabola y2=4x.y^2 = 4x. If one vertex of this triangle is the vertex of the parabola, then the length of a side of this triangle is ...........

A

432\frac{4\sqrt{3}}{2}

B

32\frac{\sqrt{3}}{2}

C

83-8\sqrt{3}

D

832\frac{8\sqrt{3}}{2}

Answer

83-8\sqrt{3}

Explanation

Solution

Let AA be the vertex and ABCABC be the equilateral triangle inscribed in the hyperbola y2=4ax.AMy^2 = 4ax. AM is \bot on BCBC. Then if AB=l,AM=lcos30=3l2AB =l, AM = l\, cos\, 30^{\circ} = \frac{\sqrt{3}l}{2} and BM=lsin30=12BM= l \,sin \,30^{\circ} = \frac{1}{2} \therefore the co-ordinates of the point BB are (3l2,l2)\left(\frac{\sqrt{3}\,l}{2}, \frac{l}{2}\right) Since BB lies on the parabola y2=4xy^{2} = 4x (l2)2=4l32 \therefore \left(\frac{l}{2}\right)^{2} = 4l\cdot\frac{\sqrt{3}}{2} l=83\Rightarrow l = 8\sqrt{3} Thus length of each side of the triangle =83=- 8\sqrt{3}