Solveeit Logo

Question

Question: An equilateral triangle ABC is formed by two Cu rods AB and BC and one A1 rod. It is heated in such ...

An equilateral triangle ABC is formed by two Cu rods AB and BC and one A1 rod. It is heated in such a way that temperature of each rod increases by ΔT\Delta TThe change in the angle ABC is

(Here, coefficient of linear expansion for Cu isα1\alpha_{1} coefficient of linear expansion for A1 isα2\alpha_{2} )

A

32(α2α1)ΔT\frac{\sqrt{3}}{2}(\alpha_{2} - \alpha_{1})\Delta T

B

23(α2α1)ΔT\frac{2}{\sqrt{3}}(\alpha_{2} - \alpha_{1})\Delta T

C

13(α2α1)ΔT\frac{1}{\sqrt{3}}(\alpha_{2} - \alpha_{1})\Delta T

D

12(α2α1)ΔT\frac{1}{2}(\alpha_{2} - \alpha_{1})\Delta T

Answer

23(α2α1)ΔT\frac{2}{\sqrt{3}}(\alpha_{2} - \alpha_{1})\Delta T

Explanation

Solution

: The situation is as shown in the figure.

Let AB=L1,AC=L2andBC=L3AB = L_{1},AC = L_{2}andBC = L_{3}

According to cosine formula

L22=L12+L322L1L3cosθL_{2}^{2} = L_{1}^{2} + L_{3}^{2} - 2L_{1}L_{3}\cos\theta

cosθ=L12+L32L222L1L3\cos\theta = \frac{L_{1}^{2} + L_{3}^{2} - L_{2}^{2}}{2L_{1}L_{3}}

2L1L3cosθ=L12+L32L222L_{1}L_{3}\cos\theta = L_{1}^{2} + L_{3}^{2} - L_{2}^{2}

Differentiating both sides, we get

2[L1dL3+L3dL1]cosθ2L1L3sinθdθ2\lbrack L_{1}dL_{3} + L_{3}dL_{1}\rbrack\cos\theta - 2L_{1}L_{3}\sin\theta d\theta

=2L1dL1+2L3dL32L2dL22L_{1}dL_{1} + 2L_{3}dL_{3} - 2L_{2}dL_{2}

(L1dL3+L3d1)CosθL1L3sinθdθ(L_{1}dL_{3} + L_{3}d_{1})Cos\theta - L_{1}L_{3}\sin\theta d\theta

=L1dl1+L3dL3L2dL2= L_{1}dl_{1} + L_{3}dL_{3} - L_{2}dL_{2} ……(i)

Here, L1=L2=L3=LL_{1} = L_{2} = L_{3} = L

dL1=Lα1ΔT\therefore dL_{1} = L\alpha_{1}\Delta T

dL2=Lα2ΔTdL_{2} = L\alpha_{2}\Delta T

dL3=Lα1ΔTdL_{3} = L\alpha_{1}\Delta T

Substituting these values in Eq. (i) we get

[L2α1ΔT+L2α1ΔT]cosθL2sinθdθ\lbrack L^{2}\alpha_{1}\Delta T + L^{2}\alpha_{1}\Delta T\rbrack\cos\theta - L^{2}\sin\theta d\theta

=L2α1ΔT+L2α1ΔTL2α2ΔT]= L^{2}\alpha_{1}\Delta T + L^{2}\alpha_{1}\Delta T - L^{2}\alpha_{2}\Delta T\rbrack

}{= 2\alpha_{1}\Delta T(\cos\theta - 1) + \alpha_{2}\Delta T}$$ Using $\theta = 60^{0},$ we get $$\frac{\sqrt{3}}{2}d\theta = 2\alpha_{1}\Delta T\left( \frac{1}{2} - 1 \right) + \alpha_{2}\Delta T = - \alpha_{1}\Delta T + \alpha_{2}\Delta T$$ $$d\theta = \frac{2}{\sqrt{3}}(\alpha_{2} - \alpha_{1})\Delta T$$