Solveeit Logo

Question

Physics Question on Optics

An equilateral prism is made of material of refractive index 3\sqrt{3}. The angle of minimum deviation through the prism is:

A

6060\degree

B

3030\degree

C

4545\degree

D

00\degree

Answer

3030\degree

Explanation

Solution

\text{ The relation between the refractive index } n, \text{ the angle of the prism } A, \text{ and the minimum deviation } D_{\text{min}} \text{ is given by the formula:}$$$n = \frac{\sin \left( \frac{A + D_{\text{min}}}{2} \right)}{\sin \left( \frac{A}{2} \right)}$$ \text{Here, the refractive index } n = \sqrt{3}, \text{ and for an equilateral prism, the angle of the prism } A = 60^\circ. \text{ Substituting these values:}$3=sin(60+Dmin2)sin(30)\sqrt{3} = \frac{\sin \left( \frac{60^\circ + D_{\text{min}}}{2} \right)}{\sin(30^\circ)}
Solving for Dmin, we find that Dmin=30.\text{Solving for } D_{\text{min}}, \text{ we find that } D_{\text{min}} = 30^\circ.