Solveeit Logo

Question

Question: An engine of mass m is moving up a slope of inclination θ at a speed v. The coefficient of friction ...

An engine of mass m is moving up a slope of inclination θ at a speed v. The coefficient of friction between engine and the rail is μ. If the engine has an efficiency η then the energy spent by engine in time t is

A

ηmg (sin η + μ cosη) vt

B

mg(μcosθ)vtη\frac { \operatorname { mg } ( \mu \cos \theta ) \mathrm { vt } } { \eta }

C

mg(sinθ+μcosθ)vtη\frac { m g ( \sin \theta + \mu \cos \theta ) \mathrm { vt } } { \eta }

D

mg2(sinθη)vt\frac { \mathrm { mg } } { 2 } \left( \frac { \sin \theta } { \eta } \right) \mathrm { vt }

Answer

mg(sinθ+μcosθ)vtη\frac { m g ( \sin \theta + \mu \cos \theta ) \mathrm { vt } } { \eta }

Explanation

Solution

Force exerted by engine = mg sin θ + μ mg cos θ = mg (sin θ + μ cos θ)

Power exerted by engine = Fv

Work done by engine = Fvt

Efficiency of engine η =  output  input = Fvt  input \frac { \text { output } } { \text { input } } = \frac { \text { Fvt } } { \text { input } }

∴ Input of engine = Fvtη=mg(sinθ+μcosθ)vtη\frac { \mathrm { Fvt } } { \eta } = \frac { \operatorname { mg } ( \sin \theta + \mu \cos \theta ) \mathrm { vt } } { \eta }