Solveeit Logo

Question

Question: An engine of a vehicle can produce a maximum acceleration of \[4\,{\text{m}} \cdot {{\text{s}}^{ - 2...

An engine of a vehicle can produce a maximum acceleration of 4ms24\,{\text{m}} \cdot {{\text{s}}^{ - 2}}. Its breaks can produce a maximum retardation of 6ms26\,{\text{m}} \cdot {{\text{s}}^{ - 2}}. The minimum time at which it can cover a distance of 3km3\,{\text{km}} is:

A. 30s30\,{\text{s}}

B. 40s40\,{\text{s}}

C. 50s50\,{\text{s}}

D. 60s60\,{\text{s}}

Explanation

Solution

Use the formula for the displacement of an object. This formula should give the relation between the maximum acceleration of the object, maximum retardation of the object, displacement of the object and the minimum time required for the displacement. Convert the unit of the displacement of the vehicle in the SI system of units i.e. from kilometer to meter and then use it in the formula.

Formula used:

The displacement SS of an object is given by

S=αβ2(α+β)t2S = \dfrac{{\alpha \beta }}{{2\left( {\alpha + \beta } \right)}}{t^2} …… (1)

Here, α\alpha is the maximum acceleration of the object, β\beta is the maximum retardation of the object and tt is the minimum time for the displacement of the object.

Complete step by step answer:

The maximum acceleration of the vehicle engine is 4ms24\,{\text{m}} \cdot {{\text{s}}^{ - 2}} and the minimum retardation of the vehicle engine is 6ms26\,{\text{m}} \cdot {{\text{s}}^{ - 2}}.

α=4ms2\alpha = 4\,{\text{m}} \cdot {{\text{s}}^{ - 2}}

β=6ms2\beta = 6\,{\text{m}} \cdot {{\text{s}}^{ - 2}}

Let the vehicle engine cover a distance of 3km3\,{\text{km}} in time tt.

S=3kmS = 3\,{\text{km}}

Convert the unit of the displacement of the vehicle engine in the SI system of units.

S=(3km)(103m1km)S = \left( {3\,{\text{km}}} \right)\left( {\dfrac{{{{10}^3}\,{\text{m}}}}{{1\,{\text{km}}}}} \right)

S=3000m \Rightarrow S = 3000\,{\text{m}}

Hence, the displacement of the vehicle is 3000m3000\,{\text{m}}.

Determine the time in which the vehicle covers a distance of 3000m3000\,{\text{m}}.

Rewrite equation (1).

S=αβ2(α+β)t2S = \dfrac{{\alpha \beta }}{{2\left( {\alpha + \beta } \right)}}{t^2}

Rearrange the above equation for time tt.

t=2S(α+β)αβt = \sqrt {\dfrac{{2S\left( {\alpha + \beta } \right)}}{{\alpha \beta }}}

Substitute 3000m3000\,{\text{m}} for SS, 4ms24\,{\text{m}} \cdot {{\text{s}}^{ - 2}} for α\alpha and 6ms26\,{\text{m}} \cdot {{\text{s}}^{ - 2}} for β\beta in the above equation.

t=2(3000m)((4ms2)+(6ms2))(4ms2)(6ms2)t = \sqrt {\dfrac{{2\left( {3000\,{\text{m}}} \right)\left( {\left( {4\,{\text{m}} \cdot {{\text{s}}^{ - 2}}} \right) + \left( {6\,{\text{m}} \cdot {{\text{s}}^{ - 2}}} \right)} \right)}}{{\left( {4\,{\text{m}} \cdot {{\text{s}}^{ - 2}}} \right)\left( {6\,{\text{m}} \cdot {{\text{s}}^{ - 2}}} \right)}}}

t=6000024\Rightarrow t = \sqrt {\dfrac{{60000}}{{24}}}

t=2500\Rightarrow t = \sqrt {2500}

t=50s \therefore t = 50\,{\text{s}}

Therefore, the time required for the vehicle engine to cover a distance of 3km3\,{\text{km}} is 50s50\,{\text{s}}.

**So, the correct answer is “Option C”.
**
Note:

Convert the unit of the displacement from kilometer to meter. In order to get the correct answer, substitute the values of all the physical quantities in the formula in the same SI system of units including

displacement of the object and the minimum time required for the displacement in the formula used in the above question.