Solveeit Logo

Question

Physics Question on Inductance

An emf of 15V15\, V is applied to a circuit containing 5H5\, H inductance and 10Ω10\, \Omega resistance. The ratio of currents at time t=t = \infty and t=1st = 1\, s is

A

ee21\frac{e}{e^2 -1}

B

e2e1\frac{e^2}{e -1}

C

e1e2\frac{e}{1 - e^2 }

D

e2e21\frac{e^2 }{e^2 -1}

Answer

e2e21\frac{e^2 }{e^2 -1}

Explanation

Solution

According to the question, The circuit as shown below,

The current in the circuit,
I(t)=I()[I()I(0)]et/τI(t) = I(\infty) - [I(\infty) - I(0)]e^{-t/\tau} \dots(i)
\because Time constant, τ=LR=510=12sec\tau = \frac{L}{R} = \frac{5}{10} = \frac{1}{2} sec
at tt \to \infty, inductor behaves as short circuit hence circuit will be

So, I()=1510=1.5AI(\infty)=\frac{15}{10}=1.5 \,A \dots(ii)
at t0t \rightarrow 0, inductor behaves as open circuit
so, no current flow in the circuit, I(0)=0I(0)=0
So from E (i),
I(t)=1.5(1.50)et(1/2)=1.5(1e2t)\Rightarrow I(t) =1.5-(1.5-0) e^{\frac{-t}{(1 / 2)}}=1.5\left(1-e^{-2 t}\right)
at t=1sec,I(1)=1.5(1e2) t =1 \,sec , \Rightarrow I(1)=1.5\left(1-e^{-2}\right) \ldots (iii)
From E (ii) and (iii), we get
I()I(1)=1.51.5(1e2)=e2e21\Rightarrow \frac{I(\infty)}{I(1)}=\frac{1.5}{1.5\left(1-e^{-2}\right)}=\frac{e^{2}}{e^{2}-1}