Solveeit Logo

Question

Physics Question on Surface tension

An elliptically shaped ring of dimensions shown in figure just touches, the horizontal surface of a liquid of surface tension S. The force required to pull the ring away from the liquid surface is

A

2π(a1b1+a2b2)S2\pi (\sqrt{{{a}_{1}}{{b}_{1}}}+\sqrt{{{a}_{2}}{{b}_{2}}})S

B

π(a1+b1+a2+b2)S\pi ({{a}_{1}}+{{b}_{1}}+{{a}_{2}}+{{b}_{2}})S

C

π(a1+a22+b1+b22)S\pi \left( \frac{{{a}_{1}}+{{a}_{2}}}{2}+\frac{{{b}_{1}}+{{b}_{2}}}{2} \right)S

D

2π(a1b1+a2b2)S\sqrt{2\pi }(\sqrt{{{a}_{1}}{{b}_{1}}}+\sqrt{{{a}_{2}}{{b}_{2}}})S

Answer

2π(a1b1+a2b2)S2\pi (\sqrt{{{a}_{1}}{{b}_{1}}}+\sqrt{{{a}_{2}}{{b}_{2}}})S

Explanation

Solution

Internal mean radius r1a1b1{{r}_{1}}\sqrt{{{a}_{1}}{{b}_{1}}} Internal circumference of the ring =2πr1=2πa1b1=2\pi {{r}_{1}}=2\pi \sqrt{{{a}_{1}}{{b}_{1}}} External mean radius r2=a2b2{{r}_{2}}=\sqrt{{{a}_{2}}{{b}_{2}}} External circumference of the ring =2πr2=2πa2b2=2\pi {{r}_{2}}=2\pi \sqrt{{{a}_{2}}{{b}_{2}}} Thus, force required F=2πa1b1S+2πa2b2SF=2\pi \sqrt{{{a}_{1}}{{b}_{1}}S}+2\pi \sqrt{{{a}_{2}}{{b}_{2}}}\,S =2π(a1b1+a2b2)S=2\pi (\sqrt{{{a}_{1}}{{b}_{1}}}+\sqrt{{{a}_{2}}{{b}_{2}}})S