Solveeit Logo

Question

Mathematics Question on Conic sections

An ellipse passes through the foci of the hyperbola, 9x2?4y2=369x^2? 4y^2 = 36 an and minor axes lie along the transverse and conjugate axes of the hyperbola respectively. If the product of eccentricities of the two conics is 12,\frac{1}{2}, then which of the following points does not lie on the ellipse ?

A

(13,0)\left(\sqrt{13}, 0\right)

B

(392,3)\left(\frac{\sqrt{39}}{2},\sqrt{3}\right)

C

(12,13,32)\left(\frac{1}{2},\sqrt{13}, \frac{\sqrt{3}}{2}\right)

D

(132,6)\left(\sqrt{\frac{13}{2}}, \sqrt{6}\right)

Answer

(12,13,32)\left(\frac{1}{2},\sqrt{13}, \frac{\sqrt{3}}{2}\right)

Explanation

Solution

Equation of hyperbola is
x24y29=1\frac{x^{2}}{4}-\frac{y^{2}}{9} = 1
Its Foci =(±13,0)= \left(\pm\sqrt{13}, 0\right)
e=132e = \frac{\sqrt{13}}{2}
If e, be 2 the eccentricity of the ellipse, then
e1×132=12e_{1} \times\frac{\sqrt{13}}{2} = \frac{1}{2}
e1=113\Rightarrow e_{1} = \frac{1}{\sqrt{13}}
Equation of ellipse is
x2a2+y2b2=1\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}} =1
Since ellipse passes through the foci
(±13,0)\left(\pm \sqrt{13}, 0\right) of the hyperbola, therefore
a2=13a^{2} = 13
Now a2b2=ae1\sqrt{a^{2}-b^{2}} = ae_{1}
13b2=1\therefore 13-b^{2}= 1
b12=12\Rightarrow b^{12} = 12
Hence, equation of ellipse is
x213+y212=1\frac{x^{2}}{13}+\frac{y^{2}}{12} = 1
Now putting the coordinate of the point
(132,32)\left(\frac{\sqrt{13}}{2},\frac{\sqrt{3}}{2}\right) in the equation of the ellipse,
we get
134×13+34×12=1\frac{13}{4\times13}+\frac{3}{4\times 12} = 1
14+116=1\Rightarrow \frac{1}{4}+\frac{1}{16} = 1, which is not true,
Hence the point (132,32)\left(\frac{\sqrt{13}}{2},\frac{\sqrt{3}}{2}\right) does not lie on the ellipse.