Solveeit Logo

Question

Mathematics Question on Conic sections

An ellipse intersects the hyperbola 2x22y2=12x^2-2y^2=1 orthogonally. The eccentricity of the ellipse is reciprocal to th a t of the hyperbola. If the axes of the ellipse are along the coordinate axes, then

A

(a) equation of ellipse is x2+2y2=2x^2+2y^2=2

B

(b) the foci of ellipse are (±\pm1, 0)

C

(c) equation of ellipse is x2+2y2=4x^2+2y^2=4

D

(d) the foci of ellipse are (±2,0)(\pm\sqrt {2},0)

Answer

(b) the foci of ellipse are (±\pm1, 0)

Explanation

Solution

Given,2x^2-2y^2=1
x2(12)y2(12)=1(i)\Rightarrow \frac{x^2}{\bigg(\frac{1}{2}\bigg)}-\frac{y^2}{\bigg(\frac{1}{2}\bigg)}=1 \, \, \, \, \, \, \, \, \, \, \, \, (i)
Eccentricity of hyperbola =2=\sqrt 2
So, eccentricity of ellipse =12=\frac{1}{\sqrt 2}
Let equation of ellipse be
x2a2+y2b2=1[wherea>b]\frac{x^2}{a^2}+\frac{y^2}{b^2}=1 \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, [where a>b]
12=1b2a2\therefore\, \, \, \, \, \, \, \, \, \, \, \, \, \, \frac{1}{\sqrt 2}=\sqrt{1-\frac{b^2}{a^2}}
b2a2=12a2=2b2\Rightarrow \, \, \, \, \, \, \, \, \, \, \, \, \, \, \frac{b^2}{a^2}=\frac{1}{2} \Rightarrow \, \, a^2=2b^2
x2+2y2=2b2........(ii)\Rightarrow \, \, \, \, \, \, \, \, \, \, x^2+2y^2=2b^2 \, \, \, \, \, \, \, \, \, \, \, ........(ii)
Let ellipse and hyperbola intersect at
A(12secθ,12tanθ)\, \, \, \, \, \, \, \, \, \, \, \, \, \, \, A\bigg(\frac{1}{\sqrt 2} sec\theta,\frac{1}{\sqrt 2 tan \theta}\bigg)
On differentiating E (i), we get
4x4ydydx=0dydx=xy\, \, \, \, \, \, \, \, \, \, 4x-4y\frac{dy}{dx}=0 \Rightarrow \frac{dy}{dx}=\frac{x}{y}
dydxatA=secθtanθ=cosecθ\, \, \, \, \, \, \, \, \, \, \, \, \frac{dy}{dx}|_at A=\frac{sec\theta}{tan\theta}=cosec\theta
and on differentiating E (ii), we get
2x+4ydydx=0dydxatA=secθtanθ=cosecθ2x+4y\frac{dy}{dx}=0\Rightarrow \frac{dy}{dx}|_at A=\frac{sec\theta}{tan\theta}=cosec\theta
Since, ellipse and hyperbola are orthogonal.
12cosec2θ=1\therefore -\frac{1}{2}cosec^2\theta=-1
12cosec2θ=2θ=±π4\Rightarrow\, \, \, \, \, \, \, \, \, \, -\frac{1}{2}cosec^2\theta=2\Rightarrow\theta=\pm\frac{\pi}{4}
A(1,12)or(1,12)\, \, \, \, \, \, \, \, A\bigg(1,\frac{1}{\sqrt2}\bigg) or \bigg(1,-\frac{1}{\sqrt2}\bigg)
Form E (i), 1+2(12)2=2b21+2\bigg(\frac{1}{\sqrt2}\bigg)^2=2b^2
b2=1\Rightarrow \, \, \, \, \, \, \, \, \, \, \, \, b^2=1
Equation of ellipse is x2+2y2=2x^2+2y^2=2
Coordinates of foci (±\pm ae, 0)=(±2.12,0)=(±1,0)=\bigg(\pm\sqrt2.\frac{1}{\sqrt2},0)=(\pm1,0)
If major axis is along Y-axis, then
12=1a2b2b2=2a2\, \, \, \, \, \, \, \, \, \, \, \frac{1}{\sqrt2}=\sqrt{1-\frac{a^2}{b^2}}\Rightarrow b^2=2a^2
2x2+y2=2a2Y=2xy\therefore \, \, \, \, \, \, \, \, \, 2x^2+y^2=2a^2 \Rightarrow Y'=-\frac{2x}{y}
y(12secθ,12tanθ)=2sinθ\Rightarrow \, \, \, \, \, \, \, \, y'\bigg(\frac{1}{\sqrt2}sec\theta,\frac{1}{\sqrt2}tan\theta)=\frac{-2}{sin\theta}
As ellipse and hyperbola are orthogonal
2sinθ.cosecθ=1\therefore \, \, \, \, \, \, \, \, -\frac{2}{sin\theta}.cosec\theta=-1
cosec2θ=12θ=±π4\Rightarrow \, \, \, \, \, \, \, \, \, cosec^2\theta=\frac{1}{2}\Rightarrow \theta=\pm\frac{\pi}{4}
2x2+y2=2a2\therefore\, \, \, \, \, \, \, \, 2x^2+y^2=2a^2
2+12=2a2\Rightarrow \, \, \, \, \, \, \, \, \, \, \, 2+\frac{1}{2}=2a^2\Rightarrow
2x2+y2=52,correspondingfociare(0,\therefore \, \, \, 2x^2+y^2=\frac{5}{2},corresponding\, foci\, are\, (0, \pm1).1).