Solveeit Logo

Question

Mathematics Question on Section Formula

An ellipse has OBOB as semi-minor axis, FF and FF are its foci and the FBF\angle FBF, is a right angle. Then, the eccentricity of the ellipse is

A

12\frac{1}{\sqrt{2}}

B

12\frac{1}{{2}}

C

14\frac{1}{{4}}

D

13\frac{1}{\sqrt{3}}

Answer

12\frac{1}{\sqrt{2}}

Explanation

Solution

FBF=90\because \angle F B F'=90^{\circ}
FB2+FB2=FF2\Rightarrow F B^{2}+F^{\prime} B^{2}=F F'2
(a2e2+b2)2+(a2e2+b2)2\therefore\left(\sqrt{a^{2} e^{2}+b^{2}}\right)^{2}+\left(\sqrt{a^{2} e^{2}+b^{2}}\right)^{2}
=(2ae)2=(2 a e)^{2}
2(a2e2+b2)=4a2e2\Rightarrow 2\left(a^{2} e^{2}+b^{2}\right)=4 a^{2} e^{2}
e2=b2a2\Rightarrow e^{2}=\frac{b^{2}}{a^{2}} ... (i)
Also, e2=1b2/a2=1e2e ^{2}=1-b^{2} / a^{2}=1-e^{2}
(By using equation (i))
2e2=1\Rightarrow 2 e^{2}=1
e=12\Rightarrow e=\frac{1}{\sqrt{2}}