Solveeit Logo

Question

Mathematics Question on Conic sections

An ellipse
E:x2a2+y2b2=1E:\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1
passes through the vertices of the hyperbola
H:x249y264=1H:\frac{x^2}{49} - \frac{y^2}{64} = -1
Let the major and minor axes of the ellipse E coincide with the transverse and conjugate axes of the hyperbola H , respectively. Let the product of the eccentricities of E and H be 1/2. If the length of the latus rectum of the ellipse E , then the value of 113 l is equal to _____.

Answer

The
Vertices of hyperbola = (0, ± 8)
As ellipse pass through it i.e.,
0+64b2=10+\frac{64}{b^2} = 1
b2=64...(1)⇒ b^2 = 64...(1)
As major axis of ellipse coincide with transverse axis of hyperbola we have b > a i.e.
e_E = \sqrt{1 - \frac{a^2}{64}}$$= \frac{\sqrt{64-a^2}}{8}
and eH=1+4964=1138e_H = \sqrt{1+\frac{49}{64}} = \frac{\sqrt{113}}{8}
eE.eH=1264a211364∴ e_E . e_H = \frac{1}{2}\frac{\sqrt{64-a^2}\sqrt{113}}{64}
(64a2)(113)=322⇒ (64-a^2)(113) = 32^2
a2=641024113⇒ a^2 = 64-\frac{1024}{113}
L.R of ellipse =2a2b= \frac{2a^2}{b}
=28(113×641024113)= \frac{2}{8}(\frac{113×64-1024}{113})
I=1552113I = \frac{1552}{113}
113l=1552∴ 113l = 1552