Solveeit Logo

Question

Chemistry Question on The solid state

An element crystallising in body centred cubic lattice has an edge length of 500pm500\,pm. If its density is 4gcm34\,g\,cm^{-3}, the atomic mass of the element (in gmol1g \,mol^{-1}) is (consider NA=6×1023N_A = 6 \times 10^{23})

A

100100

B

250250

C

125125

D

150150

Answer

150150

Explanation

Solution

Relation used,

Density (ρ)=Z×Ma3×NA(\rho) =\frac{Z \times M}{a^{3} \times N_{A}}

where, Z=Z = contribution factor

M=M = molar mass of particle

a=a = edge length

ρ=\rho = density of crystal

Given, NA=N_{A} = Avogadro's number

=6×1023=6 \times 10^{23}
ρ=4g/cm3\rho =4 g / cm ^{3}
Z=2Z =2 (crystal has bcc structure)

M=ρ×a3×NAZ\therefore M=\frac{\rho \times a^{3} \times N_{A}}{Z}
=4×(500×1010)3×6×10232=\frac{4 \times\left(500 \times 10^{-10}\right)^{3} \times 6 \times 10^{23}}{2}
M=4×(5)3×6×1012M =\frac{4 \times(5)^{3} \times 6 \times 10^{-1}}{2}
=4×125×6×1012=\frac{4 \times 125 \times 6 \times 10^{-1}}{2}
M=3002=150gmol1M =\frac{300}{2}=150\, g\, mol ^{-1}
\therefore The atomic mass of the element (in gmol1g\, mol ^{-1} ) is 150 .