Solveeit Logo

Question

Question: An electron with speed v and a photon with a speed c have the same de-Brogli wavelength. If the K.E....

An electron with speed v and a photon with a speed c have the same de-Brogli wavelength. If the K.E. and momentum of electrons is Eeand Pe and that of photon is Eph and Pph respectively, then the correct statement is –

A

EeEph=2cv\frac{E_{e}}{E_{ph}} = \frac{2c}{v}

B

EeEph=v2c\frac{E_{e}}{E_{ph}} = \frac{v}{2c}

C

PePph=2cv\frac{P_{e}}{P_{ph}} = \frac{2c}{v}

D

None of these

Answer

EeEph=v2c\frac{E_{e}}{E_{ph}} = \frac{v}{2c}

Explanation

Solution

KEeKEph\frac{KE_{e}}{KE_{ph}} = 12mv2hν\frac{\frac{1}{2}mv^{2}}{h\nu}= 12\frac{1}{2}× v × mvh\frac{mv}{h}× hhν\frac{h}{h\nu}

but hmv\frac{h}{mv} = hchν\frac{hc}{h\nu}

mvh=hνhc\frac{mv}{h} = \frac{h\nu}{hc}

EeEph\frac{E_{e}}{E_{ph}}= 12v\frac { 1 } { 2 } \mathrm { v } [mvh.hhν.cc]\left\lbrack \frac{mv}{h}.\frac{h}{h\nu}.\frac{c}{c} \right\rbrack

= 12\frac{1}{2}v[hνhc.hchν.1c]\left\lbrack \frac{h\nu}{hc}.\frac{hc}{h\nu}.\frac{1}{c} \right\rbrack = v2c\frac{v}{2c}