Solveeit Logo

Question

Physics Question on Electromagnetism

An electron with kinetic energy 5eV5 \, \text{eV} enters a region of uniform magnetic field of 3μT3 \, \mu\text{T} perpendicular to its direction. An electric field EE is applied perpendicular to the direction of velocity and magnetic field. The value of EE, so that the electron moves along the same path, is ______ NC1\text{NC}^{-1}.
Given: mass of electron = 9×1031kg9 \times 10^{-31} \, \text{kg}, electric charge = 1.6×1019C1.6 \times 10^{-19} \, \text{C}

Answer

For the given condition of moving undeflected, the net force should be zero:
qE=qvB    E=vBqE = qvB \implies E = vB
The velocity vv can be expressed in terms of kinetic energy:
v=2KEmv = \sqrt{\frac{2KE}{m}}
Substituting this into the expression for EE:
E=2KEmBE = \sqrt{\frac{2KE}{m}} \cdot B
Substituting the given values:
E=251.6×10199×10313×106E = \sqrt{\frac{2 \cdot 5 \cdot 1.6 \times 10^{-19}}{9 \times 10^{-31}}} \cdot 3 \times 10^{-6}
Calculating:
E=16×10199×10313×106E = \sqrt{\frac{16 \times 10^{-19}}{9 \times 10^{-31}}} \cdot 3 \times 10^{-6}
E=1.6×101293×106E = \sqrt{\frac{1.6 \times 10^{12}}{9}} \cdot 3 \times 10^{-6}
E=1.78×10123×106E = \sqrt{1.78 \times 10^{12}} \cdot 3 \times 10^{-6}
E=4N/CE = 4 \, \text{N/C}
Final Answer: E=4N/CE = 4 \, \text{N/C}.

Explanation

Solution

For the given condition of moving undeflected, the net force should be zero:
qE=qvB    E=vBqE = qvB \implies E = vB
The velocity vv can be expressed in terms of kinetic energy:
v=2KEmv = \sqrt{\frac{2KE}{m}}
Substituting this into the expression for EE:
E=2KEmBE = \sqrt{\frac{2KE}{m}} \cdot B
Substituting the given values:
E=251.6×10199×10313×106E = \sqrt{\frac{2 \cdot 5 \cdot 1.6 \times 10^{-19}}{9 \times 10^{-31}}} \cdot 3 \times 10^{-6}
Calculating:
E=16×10199×10313×106E = \sqrt{\frac{16 \times 10^{-19}}{9 \times 10^{-31}}} \cdot 3 \times 10^{-6}
E=1.6×101293×106E = \sqrt{\frac{1.6 \times 10^{12}}{9}} \cdot 3 \times 10^{-6}
E=1.78×10123×106E = \sqrt{1.78 \times 10^{12}} \cdot 3 \times 10^{-6}
E=4N/CE = 4 \, \text{N/C}
Final Answer: E=4N/CE = 4 \, \text{N/C}.