Solveeit Logo

Question

Physics Question on Dual nature of matter

An electron of mass mm with an initial velocity V=V0i^(V0>0)\vec{V} = V_0 \hat{i} (V_0 > 0) enters an electric field E=E0i^(E0=constant >0)\vec{E} = - E_0 \hat{i} (E_0 = \text{constant } > 0) at t=0t = 0. If λo\lambda_o is its de-Broglie wavelength initially,. then its de-Broglie wavelength at time tt is

A

λ0\lambda_0

B

λ0(1+eE0mV0t)\frac{\lambda_{0}}{\left(1+ \frac{eE_{0}}{mV_{0}} t\right)}

C

λ0t\lambda_0 \, t

D

λ0(1+eE0mV0t)\lambda_0 \left(1+ \frac{eE_{0}}{mV_{0}} t\right)

Answer

λ0(1+eE0mV0t)\frac{\lambda_{0}}{\left(1+ \frac{eE_{0}}{mV_{0}} t\right)}

Explanation

Solution

Initial de-Broglie wavelength
λ0=hmV0\lambda_0 = \frac{h}{mV_0} ....(i)

Acceleration of electron
a=eE0ma = \frac{e E_0}{m}
Velocity after time ? tt ?
V=(V0+eE0mt)V = \left(V_{0} + \frac{eE_{0}}{m} t\right)
So, λ=hmV=hm(V0+eE0mt)\lambda = \frac{h}{mV} = \frac{h}{m\left(V_{0} + \frac{eE_{0}}{m}t\right)}
=hmV0[1+eE0mV0t]=λ0[1+eE0mV0t]= \frac{h}{mV_{0} \left[1+ \frac{eE_{0}}{mV_{0}}t\right]} = \frac{\lambda_{0}}{\left[1+ \frac{eE_{0}}{mV_{0}}t\right]} ....(ii)
Divide (ii) by (i),
λ=λ0[1+eE0mV0t]\lambda = \frac{\lambda_{0}}{\left[1+ \frac{eE_{0}}{mV_{0}}t \right]}