Solveeit Logo

Question

Physics Question on Magnetic Force

An electron of mass 9.0×1031kg9.0 \times 10^{-31} kg under the action of a magnetic field moves in a circle of radius 2cm2\, cm at a speed of 3×106m/s3 \times 10^6 \, m/s . If a proton of mass 1.8×1027kg1.8 \times 10^{27} \, kg was to move in a circle of same radius in the same magnetic field, then its speed will become

A

1.5×103m/s1.5 \times 10^3 \, m/s

B

3×106m/s 3 \times 10^6 \, m/s

C

6×104m/s6 \times 10^4 \, m/s

D

2×106m/s2 \times 10^6 \, m/s

Answer

1.5×103m/s1.5 \times 10^3 \, m/s

Explanation

Solution

Here, the magnetic force (Bqv) will provide the necessary centripetal force
(mv2r)\left(\frac{mv^{2}}{r}\right)
Bqv=mv2r\therefore \, \, Bqv = \frac{mv^{2}}{r}
Bqr=mv\Rightarrow Bqr = mv
For electron and proton, the magnetic field B, charge q and radius r, all same.
\therefore \, \, mv = constant
i.e., meve=mpvp m_{e}v_{e} = m_{p}v_{p}
vp=(memp)ve=(9×10311.8×1027)3×106v_{p} = \left(\frac{m_{e}}{m_{p}}\right) v_{e} = \left(\frac{9 \times10^{-31}}{1.8\times 10^{-27}}\right) 3\times 10^{6}
=1.5×103ms= 1.5 \times 10^{3} ms