Solveeit Logo

Question

Physics Question on Magnetism and matter

An electron moves through a uniform magnetic field B=B0i^+2B0j^T\vec{B} = B_0 \hat{i} + 2B_0 \hat{j} \, \text{T}. At a particular instant of time, the velocity of the electron is u=3i^+5j^m/s\vec{u} = 3\hat{i} + 5\hat{j} \, \text{m/s}. If the magnetic force acting on the electron is F=5ekN\vec{F} = 5e k \, \text{N}, where ee is the charge of the electron, then the value of B0B_0 is _____ T

Answer

The magnetic force is given by:

F=q(v×B)\vec{F} = q (\vec{v} \times \vec{B})

Substituting the values:

5ek^=e(3i^+5j^)×(B0i^+2B0j^)5e \hat{k} = e \left( 3\hat{i} + 5\hat{j} \right) \times \left( B_0 \hat{i} + 2B_0 \hat{j} \right)

Calculating the cross product:

5ek^=e(6B0k^5B0k^)5e \hat{k} = e \left( 6B_0 \hat{k} - 5B_0 \hat{k} \right)

Simplifying:

5ek^=eB0k^5e \hat{k} = e B_0 \hat{k}

Therefore:

B0=5TB_0 = 5T