Solveeit Logo

Question

Question: An electron moves straight inside a charged parallel plate capacitor of uniform surface charge densi...

An electron moves straight inside a charged parallel plate capacitor of uniform surface charge density σ. The space between the plates is filled with constant magnetic field of inductionB\vec { B }. Neglect gravity, the time of straight line motion of the electron in the capacitor is

A

σε0B\frac { \sigma } { \varepsilon _ { 0 } \ell B }

B

ε0Bσ\frac { \varepsilon _ { 0 } \ell B } { \sigma }

C

σε0B\frac { \sigma } { \varepsilon _ { 0 } B }

D

ε0Bσ\frac { \varepsilon _ { 0 } B } { \sigma }

Answer

ε0Bσ\frac { \varepsilon _ { 0 } \ell B } { \sigma }

Explanation

Solution

The net electric field

The net force acting on the electron is zero because it moves with constant velocity

Fnet=Fe+Fm=0\Rightarrow \overrightarrow { \mathrm { F } } _ { \mathrm { net } } = \overrightarrow { \mathrm { F } } _ { \mathrm { e } } + \overrightarrow { \mathrm { F } } _ { \mathrm { m } } = 0

Fe=Fm\Rightarrow \left| \overrightarrow { \mathrm { F } } _ { \mathrm { e } } \right| = \left| \overrightarrow { \mathrm { F } } _ { \mathrm { m } } \right|

⇒ eE = evB

∴ The time of motion inside the capacitor

Hence (2) is correct.