Solveeit Logo

Question

Question: An electron (mass *m*) with an initial velocity \(\overset{\rightarrow}{v} = v_{0}\widehat{i}\) is i...

An electron (mass m) with an initial velocity v=v0i^\overset{\rightarrow}{v} = v_{0}\widehat{i} is in an electric field E=E0 j^.\overset{\rightarrow}{E} = E_{0}\ \widehat{j}. if λ0=hmv0,\lambda_{0} = \frac{h}{mv_{0}}, it’s de Broglie wavelength at time t is given by

A

λ0\lambda_{0}

B

λ01+e2E02t2m2v02\lambda_{0}\sqrt{1 + \frac{e^{2}E_{0}^{2}t^{2}}{m^{2}v_{0}^{2}}}

C

λ01+e2E02t2m2v02\frac{\lambda_{0}}{\sqrt{1 + \frac{e^{2}E_{0}^{2}t^{2}}{m^{2}v_{0}^{2}}}}

D

λ0(1+e2E02t2m2v02)\frac{\lambda_{0}}{\left( 1 + \frac{e^{2}E_{0}^{2}t^{2}}{m^{2}v_{0}^{2}} \right)}

Answer

λ01+e2E02t2m2v02\frac{\lambda_{0}}{\sqrt{1 + \frac{e^{2}E_{0}^{2}t^{2}}{m^{2}v_{0}^{2}}}}

Explanation

Solution

: Initial de Broglie wavelength of electron, λ0=hmv0\lambda_{0} = \frac{h}{mv_{0}}

Force on electron in electric field, F=eE=eE0j^\overrightarrow{F} = - e\overset{\rightarrow}{E} = - eE_{0}\widehat{j}

Acceleration of electron, a=Fm=eE0mj^\overrightarrow{a} = \frac{\overrightarrow{F}}{m} = - \frac{eE_{0}}{m}\widehat{j}

It is acting along negative y-axis

The initial velocity of electron along x-axis vx0=v0ı^\overset{\rightarrow}{v_{x_{0}}} = v_{0}î

Initial velocity of electron along y- axis vy0=0\overset{\rightarrow}{v_{y_{0}}} = 0

Velocity of electron after time t along x-axis vx=v0ı^\overset{\rightarrow}{v_{x}} = v_{0}î

(\thereforeThere is no acceleration of electron along x-axis velocity of electron after time t along y-axis)

vy=0+(eE0mj^)t=eE0mtj^\overset{\rightarrow}{v_{y}} = 0 + \left( - \frac{eE_{0}}{m}\widehat{j} \right)t = - \frac{eE_{0}}{m}t\widehat{j}

Magnitude of velocity of electrons after time t is

v=vx2+vy2=v02+(eE0mt)2=v01+e2E02t2(m2v02)\left| \overrightarrow{v} \right| = \sqrt{v_{x}^{2} + v_{y}^{2}} = \sqrt{v_{0}^{2} + \left( \frac{- eE_{0}}{m}t \right)^{2}} = v_{0}\sqrt{1 + \frac{e^{2}E_{0}^{2}t^{2}}{(m^{2}v_{0}^{2})}}

De Broglie wavelength associated with electron at time t is

λ=hmv=hmv01+e2E02t2(m2v02)=λ01+e2E02t2(m2v02)\lambda = \frac{h}{mv} = \frac{h}{mv_{0}\sqrt{1 + \frac{e^{2}E_{0}^{2}t^{2}}{(m^{2}v_{0}^{2})}}} = \frac{\lambda_{0}}{\sqrt{1 + \frac{e^{2}E_{0}^{2}t^{2}}{(m^{2}v_{0}^{2})}}}